Cargando…
Prediction of the performance of artificial neural networks in mapping sEMG to finger joint angles via signal pre-investigation techniques
The inputs to the outputs of nonlinear systems can be modeled using machine and deep learning approaches, among which artificial neural networks (ANNs) are a promising option. However, noisy signals affect ANN modeling negatively; hence, it is important to investigate these signals prior to the mode...
Autores principales: | Batayneh, Wafa, Abdulhay, Enas, Alothman, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132076/ https://www.ncbi.nlm.nih.gov/pubmed/32274431 http://dx.doi.org/10.1016/j.heliyon.2020.e03669 |
Ejemplares similares
-
Gaussian Process Autoregression for Joint Angle Prediction Based on sEMG Signals
por: Liang, Jie, et al.
Publicado: (2021) -
The Influence of the sEMG Amplitude Estimation Technique on the EMG–Force Relationship
por: Ranaldi, Simone, et al.
Publicado: (2022) -
Neural network committees for finger joint angle estimation from surface EMG signals
por: Shrirao, Nikhil A, et al.
Publicado: (2009) -
A Spiking Neural Network in sEMG Feature Extraction
por: Lobov, Sergey, et al.
Publicado: (2015) -
sEMG-angle estimation using feature engineering techniques for least square support vector machine
por: Gao, Yongsheng, et al.
Publicado: (2019)