Cargando…
Machine learning highlights the deficiency of conventional dosimetric constraints for prevention of high-grade radiation esophagitis in non-small cell lung cancer treated with chemoradiation
BACKGROUND AND PURPOSE: Radiation esophagitis is a clinically important toxicity seen with treatment for locally-advanced non-small cell lung cancer. There is considerable disagreement among prior studies in identifying predictors of radiation esophagitis. We apply machine learning algorithms to ide...
Autores principales: | Luna, José Marcio, Chao, Hann-Hsiang, Shinohara, Russel T., Ungar, Lyle H., Cengel, Keith A., Pryma, Daniel A., Chinniah, Chidambaram, Berman, Abigail T., Katz, Sharyn I., Kontos, Despina, Simone, Charles B., Diffenderfer, Eric S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132156/ https://www.ncbi.nlm.nih.gov/pubmed/32274426 http://dx.doi.org/10.1016/j.ctro.2020.03.007 |
Ejemplares similares
-
Radiomic Phenotypes for Improving Early Prediction of Survival in Stage III Non-Small Cell Lung Cancer Adenocarcinoma after Chemoradiation
por: Luna, José Marcio, et al.
Publicado: (2022) -
Resampling and harmonization for mitigation of heterogeneity in image parameters of baseline scans
por: Singh, Apurva, et al.
Publicado: (2022) -
Dietary Flaxseed in Non-Small Cell Lung Cancer Patients Receiving Chemoradiation
por: Berman, Abigail T, et al.
Publicado: (2013) -
Are radiomic signatures ready for incorporation in the clinical pipeline?
por: Singh, Apurva, et al.
Publicado: (2023) -
Generalized ComBat harmonization methods for radiomic features with multi-modal distributions and multiple batch effects
por: Horng, Hannah, et al.
Publicado: (2022)