Cargando…
Extraction of mechanical properties of materials through deep learning from instrumented indentation
Instrumented indentation has been developed and widely utilized as one of the most versatile and practical means of extracting mechanical properties of materials. This method is particularly desirable for those applications where it is difficult to experimentally determine the mechanical properties...
Autores principales: | Lu, Lu, Dao, Ming, Kumar, Punit, Ramamurty, Upadrasta, Karniadakis, George Em, Suresh, Subra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132259/ https://www.ncbi.nlm.nih.gov/pubmed/32179694 http://dx.doi.org/10.1073/pnas.1922210117 |
Ejemplares similares
-
Analyses of internal structures and defects in materials using physics-informed neural networks
por: Zhang, Enrui, et al.
Publicado: (2022) -
Patient-specific modeling of individual sickle cell behavior under transient hypoxia
por: Li, Xuejin, et al.
Publicado: (2017) -
Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease
por: Cai, Shengze, et al.
Publicado: (2021) -
Systems biology informed deep learning for inferring parameters and hidden dynamics
por: Yazdani, Alireza, et al.
Publicado: (2020) -
Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders
por: Li, He, et al.
Publicado: (2018)