Cargando…

Ultrastructural Changes in Hepatocytes and Chemopreventive Effects of Short-Term Administration of Curcuma longa L. against Oxidative Stress-Induced Toxicity: Improvement Mechanisms of Liver Detoxification

The rhizomes of Curcuma longa L. (CL) have been widely used in herbal medicines worldwide. It has been shown to possess prophylactic effects against oxidative stress. However, there is a paucity of information regarding the protective role of CL against oxidative stress in the absence of toxic agent...

Descripción completa

Detalles Bibliográficos
Autor principal: Hasan, Mohammed A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132359/
https://www.ncbi.nlm.nih.gov/pubmed/32328143
http://dx.doi.org/10.1155/2020/9535731
_version_ 1783517419763924992
author Hasan, Mohammed A.
author_facet Hasan, Mohammed A.
author_sort Hasan, Mohammed A.
collection PubMed
description The rhizomes of Curcuma longa L. (CL) have been widely used in herbal medicines worldwide. It has been shown to possess prophylactic effects against oxidative stress. However, there is a paucity of information regarding the protective role of CL against oxidative stress in the absence of toxic agents. The aim of the study was to elucidate the antioxidative stress pharmacodynamics of CL. Eighteen 12-week-old Sprague-Dawley rats weighing about 300 ± 25 gm were divided equally into six groups. Four of the groups were supplemented with CL at 100 mg/kg b.w./day orally (P.O.) and labeled as 1(st), 3(rd), 5(th), and 6(th) day groups. The PCx (positive control) group was given distilled water orally, and the NCx (negative control) group rats were provided with food and water ad libitum. Blood samples were collected, and rats were sacrificed on days 1, 3, 5, and 6 (2 h) posttreatment. The blood was used for oxidative stress enzyme analysis (SOD, GSH-Px, and MDA) and liver (ALT) and kidney (creatinine) function assay, and the liver was dissected for histology. The results revealed that CL exhibited an antioxidative stress effect in the liver and kidneys as indicated by the low levels of ALT and creatinine. In response to antioxidant enzymes, especially that of the 3(rd)-day treatment group, an increase in SOD and GSH-Px indirectly caused an alleviation of oxidative stress, leading to a much lower level of MDA. It was concluded that treatment with CL at 100 mg/kg b.w./per day for three consecutive days demonstrated the highest efficacy in abating oxidative stress in rats.
format Online
Article
Text
id pubmed-7132359
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-71323592020-04-23 Ultrastructural Changes in Hepatocytes and Chemopreventive Effects of Short-Term Administration of Curcuma longa L. against Oxidative Stress-Induced Toxicity: Improvement Mechanisms of Liver Detoxification Hasan, Mohammed A. Evid Based Complement Alternat Med Research Article The rhizomes of Curcuma longa L. (CL) have been widely used in herbal medicines worldwide. It has been shown to possess prophylactic effects against oxidative stress. However, there is a paucity of information regarding the protective role of CL against oxidative stress in the absence of toxic agents. The aim of the study was to elucidate the antioxidative stress pharmacodynamics of CL. Eighteen 12-week-old Sprague-Dawley rats weighing about 300 ± 25 gm were divided equally into six groups. Four of the groups were supplemented with CL at 100 mg/kg b.w./day orally (P.O.) and labeled as 1(st), 3(rd), 5(th), and 6(th) day groups. The PCx (positive control) group was given distilled water orally, and the NCx (negative control) group rats were provided with food and water ad libitum. Blood samples were collected, and rats were sacrificed on days 1, 3, 5, and 6 (2 h) posttreatment. The blood was used for oxidative stress enzyme analysis (SOD, GSH-Px, and MDA) and liver (ALT) and kidney (creatinine) function assay, and the liver was dissected for histology. The results revealed that CL exhibited an antioxidative stress effect in the liver and kidneys as indicated by the low levels of ALT and creatinine. In response to antioxidant enzymes, especially that of the 3(rd)-day treatment group, an increase in SOD and GSH-Px indirectly caused an alleviation of oxidative stress, leading to a much lower level of MDA. It was concluded that treatment with CL at 100 mg/kg b.w./per day for three consecutive days demonstrated the highest efficacy in abating oxidative stress in rats. Hindawi 2020-04-19 /pmc/articles/PMC7132359/ /pubmed/32328143 http://dx.doi.org/10.1155/2020/9535731 Text en Copyright © 2020 Mohammed A. Hasan. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Hasan, Mohammed A.
Ultrastructural Changes in Hepatocytes and Chemopreventive Effects of Short-Term Administration of Curcuma longa L. against Oxidative Stress-Induced Toxicity: Improvement Mechanisms of Liver Detoxification
title Ultrastructural Changes in Hepatocytes and Chemopreventive Effects of Short-Term Administration of Curcuma longa L. against Oxidative Stress-Induced Toxicity: Improvement Mechanisms of Liver Detoxification
title_full Ultrastructural Changes in Hepatocytes and Chemopreventive Effects of Short-Term Administration of Curcuma longa L. against Oxidative Stress-Induced Toxicity: Improvement Mechanisms of Liver Detoxification
title_fullStr Ultrastructural Changes in Hepatocytes and Chemopreventive Effects of Short-Term Administration of Curcuma longa L. against Oxidative Stress-Induced Toxicity: Improvement Mechanisms of Liver Detoxification
title_full_unstemmed Ultrastructural Changes in Hepatocytes and Chemopreventive Effects of Short-Term Administration of Curcuma longa L. against Oxidative Stress-Induced Toxicity: Improvement Mechanisms of Liver Detoxification
title_short Ultrastructural Changes in Hepatocytes and Chemopreventive Effects of Short-Term Administration of Curcuma longa L. against Oxidative Stress-Induced Toxicity: Improvement Mechanisms of Liver Detoxification
title_sort ultrastructural changes in hepatocytes and chemopreventive effects of short-term administration of curcuma longa l. against oxidative stress-induced toxicity: improvement mechanisms of liver detoxification
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132359/
https://www.ncbi.nlm.nih.gov/pubmed/32328143
http://dx.doi.org/10.1155/2020/9535731
work_keys_str_mv AT hasanmohammeda ultrastructuralchangesinhepatocytesandchemopreventiveeffectsofshorttermadministrationofcurcumalongalagainstoxidativestressinducedtoxicityimprovementmechanismsofliverdetoxification