Cargando…
In vivo assessment of genotoxic potential of brown shammah (smokeless tobacco) in bone marrow cells of mice
This study was aimed to assess the genotoxicity of brown shammah (BS), a local form of smokeless tobacco, popular in Middle East countries including Yemen, Saudi Arabia and Sudan. The genotoxicity was explored using in vivo chromosomal aberration (CA), micronucleus (MN) and sperm abnormality (SA) as...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132595/ https://www.ncbi.nlm.nih.gov/pubmed/32273808 http://dx.doi.org/10.1016/j.jsps.2020.02.010 |
Sumario: | This study was aimed to assess the genotoxicity of brown shammah (BS), a local form of smokeless tobacco, popular in Middle East countries including Yemen, Saudi Arabia and Sudan. The genotoxicity was explored using in vivo chromosomal aberration (CA), micronucleus (MN) and sperm abnormality (SA) assays. In addition, oxidative stress was also determined using various hepatic markers. Swiss albino mice were selected for the study, which were divided in to 5 groups of six animals each. They include, negative control (NC, received only vehicle) as well as positive control group (PC, received vehicle for 2 weeks followed by administration of cyclophosphamide, CP). Depending upon their dose, three BS treated animal groups were BS-100, 300 and 900 mg/kg. Doses of BS were obtained by suspending BS in 0.5% CMC (carboxy methyl cellulose) and orally administered once a day for 2 weeks. Significant augmentation of the average percentage of aberrant metaphase (AM), CA per cells and suppressed mitotic activity was observed on post administration of BS. In addition, BS increased the occurrence of MNPCEs (micronucleated polychromatic erythrocytes) formation, induced cytotoxicity and increased percentage of abnormal sperms as compared to NC. Moreover, BS also induced oxidative stress as the activities of hepatic superoxide dismutase (SOD) and glutathione (GSH) were reduced and malondialdehyde (MDA) content were increased by BS. Cyclophosphamide was utilized as clastogen, showed anticipated positive results and confirmed the sensitivity of test system. Therefore, it may be deduced from the study that the BS possesses genotoxic effects on mice bone marrow and germ cells in vivo. |
---|