Cargando…
What motivates the sharing of consumer-generated genomic information?
Genomic medicine is an emerging practice that followed the completion of the Human Genome Project and that considers genomic information about an individual in the provision of their clinical care. Large and start-up direct-to-consumer genetic testing companies like Ancestry, 23andMe, Luna DNA, and...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132791/ https://www.ncbi.nlm.nih.gov/pubmed/32284864 http://dx.doi.org/10.1177/2050312120915400 |
Sumario: | Genomic medicine is an emerging practice that followed the completion of the Human Genome Project and that considers genomic information about an individual in the provision of their clinical care. Large and start-up direct-to-consumer genetic testing companies like Ancestry, 23andMe, Luna DNA, and Nebula Genomics have capitalized on findings from the Human Genome Project by offering genetic health testing services to consumers without a clinical intermediary. Genomic medicine is thus further propelled by unprecedented supply and demand market forces driven by direct-to-consumer genetic testing companies. As government entities like the National Human Genome Research Institute question how genomics can be implemented into routine medical practice to prevent disease and improve the health of all members of a diverse community, we believe that stakeholders must first examine how and scenarios in which stakeholders can become motivated to share or receive genomic information. In this commentary, we discuss consumers three scenarios: satisfying personal curiosity, providing a social good, and receiving a financial return. We examine these motivations based on recent events and current avenues through which have engaged or can engage in genomic data sharing via private, secure (e.g. centralized genomic databases and de-centralized platforms like blockchain) and public, unsecure platforms (e.g. open platforms that are publicly available online). By examining these scenarios, we can likely determine how various stakeholders, such as consumers, might prefer to extract value from genomic information and how privacy preferences among those stakeholders might vary depending on how they seek to use or share genomic information. From there, one can recommend best practices to promote transparency and uphold privacy standards and expectations among stakeholders engaged in genomic medicine. |
---|