Cargando…
Leveraging biological and statistical covariates improves the detection power in epigenome-wide association testing
BACKGROUND: Epigenome-wide association studies (EWAS), which seek the association between epigenetic marks and an outcome or exposure, involve multiple hypothesis testing. False discovery rate (FDR) control has been widely used for multiple testing correction. However, traditional FDR control method...
Autores principales: | Huang, Jinyan, Bai, Ling, Cui, Bowen, Wu, Liang, Wang, Liwen, An, Zhiyin, Ruan, Shulin, Yu, Yue, Zhang, Xianyang, Chen, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132874/ https://www.ncbi.nlm.nih.gov/pubmed/32252795 http://dx.doi.org/10.1186/s13059-020-02001-7 |
Ejemplares similares
-
Methods for Dealing With Missing Covariate Data in Epigenome-Wide Association Studies
por: Mills, Harriet L, et al.
Publicado: (2019) -
Imputation of missing covariate values in epigenome-wide analysis of DNA methylation data
por: Wu, Chong, et al.
Publicado: (2016) -
Leveraging Genomics, Transcriptomics, and Epigenomics to Understand the Biology and Chemoresistance of Ovarian Cancer
por: Muñoz-Galván, Sandra, et al.
Publicado: (2021) -
Leveraging Gene-Level Prediction as Informative Covariate in Hypothesis Weighting Improves Power for Rare Variant Association Studies
por: Ji, Ying, et al.
Publicado: (2022) -
Statistical power of likelihood ratio and Wald tests in latent class models with covariates
por: Gudicha, Dereje W., et al.
Publicado: (2016)