Cargando…
Enhanced identification of significant regulators of gene expression
BACKGROUND: Diseases like cancer will lead to changes in gene expression, and it is relevant to identify key regulatory genes that can be linked directly to these changes. This can be done by computing a Regulatory Impact Factor (RIF) score for relevant regulators. However, this computation is based...
Autores principales: | Ehsani, Rezvan, Drabløs, Finn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132893/ https://www.ncbi.nlm.nih.gov/pubmed/32252623 http://dx.doi.org/10.1186/s12859-020-3468-z |
Ejemplares similares
-
Measures of co-expression for improved function prediction of long non-coding RNAs
por: Ehsani, Rezvan, et al.
Publicado: (2018) -
TopoICSim: a new semantic similarity measure based on gene ontology
por: Ehsani, Rezvan, et al.
Publicado: (2016) -
Robust Distance Measures for kNN Classification of Cancer Data
por: Ehsani, Rezvan, et al.
Publicado: (2020) -
GAPGOM—an R package for gene annotation prediction using GO Metrics
por: van Mourik, Casper, et al.
Publicado: (2021) -
A property-based analysis of human transcription factors
por: Bahrami, Shahram, et al.
Publicado: (2015)