Cargando…
Exploring feature selection and classification methods for predicting heart disease
Machine learning has been used successfully to improve the accuracy of computer-aided diagnosis systems. This paper experimentally assesses the performance of models derived by machine learning techniques by using relevant features chosen by various feature-selection methods. Four commonly used hear...
Autores principales: | Spencer, Robinson, Thabtah, Fadi, Abdelhamid, Neda, Thompson, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7133070/ https://www.ncbi.nlm.nih.gov/pubmed/32284873 http://dx.doi.org/10.1177/2055207620914777 |
Ejemplares similares
-
Assessing Autistic Traits in Toddlers Using a Data-Driven Approach with DSM-5 Mapping
por: Abdelhamid, Neda, et al.
Publicado: (2023) -
Examining Cognitive Factors for Alzheimer’s Disease Progression Using Computational Intelligence †
por: Thabtah, Fadi, et al.
Publicado: (2022) -
Early Autism Screening: A Comprehensive Review
por: Thabtah, Fadi, et al.
Publicado: (2019) -
Forecasting Covid-19: SARMA-ARCH approach
por: Kamalov, Firuz, et al.
Publicado: (2021) -
An Efficient Method for Classification of Alcoholic and Normal Electroencephalogram Signals Based on Selection of an Appropriate Feature
por: Dorvashi, Maryam, et al.
Publicado: (2023)