Cargando…
Bifunctional Aptamer–Doxorubicin Conjugate Crosses the Blood–Brain Barrier and Selectively Delivers Its Payload to EpCAM-Positive Tumor Cells
The prognosis for breast cancer patients diagnosed with brain metastases is poor, with survival time measured merely in months. This can largely be attributed to the limited treatment options capable of reaching the tumor as a result of the highly restrictive blood–brain barrier (BBB). While methods...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7133447/ https://www.ncbi.nlm.nih.gov/pubmed/32027209 http://dx.doi.org/10.1089/nat.2019.0807 |
_version_ | 1783517632604930048 |
---|---|
author | Macdonald, Joanna Denoyer, Delphine Henri, Justin Jamieson, Adelaide Burvenich, Ingrid J.G. Pouliot, Normand Shigdar, Sarah |
author_facet | Macdonald, Joanna Denoyer, Delphine Henri, Justin Jamieson, Adelaide Burvenich, Ingrid J.G. Pouliot, Normand Shigdar, Sarah |
author_sort | Macdonald, Joanna |
collection | PubMed |
description | The prognosis for breast cancer patients diagnosed with brain metastases is poor, with survival time measured merely in months. This can largely be attributed to the limited treatment options capable of reaching the tumor as a result of the highly restrictive blood–brain barrier (BBB). While methods of overcoming this barrier have been developed and employed with current treatment options, the majority are highly invasive and nonspecific, leading to severe neurotoxic side effects. A novel approach to address these issues is the development of therapeutics targeting receptor-mediated transport mechanisms on the BBB endothelial cell membranes. Using this approach, we intercalated doxorubicin (DOX) into a bifunctional aptamer targeting the transferrin receptor on the BBB and epithelial cell adhesion molecule (EpCAM) on metastatic cancer cells. The ability of the DOX-loaded aptamer to transcytose the BBB and selectively deliver the payload to EpCAM-positive tumors was evaluated in an in vitro model and confirmed for the first time in vivo using the MDA-MB-231 breast cancer metastasis model (MDA-MB-231Br). We show that colocalized aptamer and DOX are clearly detectable within the brain lesions 75 min postadministration. Collectively, results from this study demonstrate that through intercalation of a cytotoxic drug into the bifunctional aptamer, a therapeutic delivery vehicle can be developed for specific targeting of EpCAM-positive brain metastases. |
format | Online Article Text |
id | pubmed-7133447 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Mary Ann Liebert, Inc., publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-71334472020-04-06 Bifunctional Aptamer–Doxorubicin Conjugate Crosses the Blood–Brain Barrier and Selectively Delivers Its Payload to EpCAM-Positive Tumor Cells Macdonald, Joanna Denoyer, Delphine Henri, Justin Jamieson, Adelaide Burvenich, Ingrid J.G. Pouliot, Normand Shigdar, Sarah Nucleic Acid Ther Original Research Reports The prognosis for breast cancer patients diagnosed with brain metastases is poor, with survival time measured merely in months. This can largely be attributed to the limited treatment options capable of reaching the tumor as a result of the highly restrictive blood–brain barrier (BBB). While methods of overcoming this barrier have been developed and employed with current treatment options, the majority are highly invasive and nonspecific, leading to severe neurotoxic side effects. A novel approach to address these issues is the development of therapeutics targeting receptor-mediated transport mechanisms on the BBB endothelial cell membranes. Using this approach, we intercalated doxorubicin (DOX) into a bifunctional aptamer targeting the transferrin receptor on the BBB and epithelial cell adhesion molecule (EpCAM) on metastatic cancer cells. The ability of the DOX-loaded aptamer to transcytose the BBB and selectively deliver the payload to EpCAM-positive tumors was evaluated in an in vitro model and confirmed for the first time in vivo using the MDA-MB-231 breast cancer metastasis model (MDA-MB-231Br). We show that colocalized aptamer and DOX are clearly detectable within the brain lesions 75 min postadministration. Collectively, results from this study demonstrate that through intercalation of a cytotoxic drug into the bifunctional aptamer, a therapeutic delivery vehicle can be developed for specific targeting of EpCAM-positive brain metastases. Mary Ann Liebert, Inc., publishers 2020-04-01 2020-03-26 /pmc/articles/PMC7133447/ /pubmed/32027209 http://dx.doi.org/10.1089/nat.2019.0807 Text en © Joanna Macdonald et al. 2020; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Reports Macdonald, Joanna Denoyer, Delphine Henri, Justin Jamieson, Adelaide Burvenich, Ingrid J.G. Pouliot, Normand Shigdar, Sarah Bifunctional Aptamer–Doxorubicin Conjugate Crosses the Blood–Brain Barrier and Selectively Delivers Its Payload to EpCAM-Positive Tumor Cells |
title | Bifunctional Aptamer–Doxorubicin Conjugate Crosses the Blood–Brain Barrier and Selectively Delivers Its Payload to EpCAM-Positive Tumor Cells |
title_full | Bifunctional Aptamer–Doxorubicin Conjugate Crosses the Blood–Brain Barrier and Selectively Delivers Its Payload to EpCAM-Positive Tumor Cells |
title_fullStr | Bifunctional Aptamer–Doxorubicin Conjugate Crosses the Blood–Brain Barrier and Selectively Delivers Its Payload to EpCAM-Positive Tumor Cells |
title_full_unstemmed | Bifunctional Aptamer–Doxorubicin Conjugate Crosses the Blood–Brain Barrier and Selectively Delivers Its Payload to EpCAM-Positive Tumor Cells |
title_short | Bifunctional Aptamer–Doxorubicin Conjugate Crosses the Blood–Brain Barrier and Selectively Delivers Its Payload to EpCAM-Positive Tumor Cells |
title_sort | bifunctional aptamer–doxorubicin conjugate crosses the blood–brain barrier and selectively delivers its payload to epcam-positive tumor cells |
topic | Original Research Reports |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7133447/ https://www.ncbi.nlm.nih.gov/pubmed/32027209 http://dx.doi.org/10.1089/nat.2019.0807 |
work_keys_str_mv | AT macdonaldjoanna bifunctionalaptamerdoxorubicinconjugatecrossesthebloodbrainbarrierandselectivelydeliversitspayloadtoepcampositivetumorcells AT denoyerdelphine bifunctionalaptamerdoxorubicinconjugatecrossesthebloodbrainbarrierandselectivelydeliversitspayloadtoepcampositivetumorcells AT henrijustin bifunctionalaptamerdoxorubicinconjugatecrossesthebloodbrainbarrierandselectivelydeliversitspayloadtoepcampositivetumorcells AT jamiesonadelaide bifunctionalaptamerdoxorubicinconjugatecrossesthebloodbrainbarrierandselectivelydeliversitspayloadtoepcampositivetumorcells AT burvenichingridjg bifunctionalaptamerdoxorubicinconjugatecrossesthebloodbrainbarrierandselectivelydeliversitspayloadtoepcampositivetumorcells AT pouliotnormand bifunctionalaptamerdoxorubicinconjugatecrossesthebloodbrainbarrierandselectivelydeliversitspayloadtoepcampositivetumorcells AT shigdarsarah bifunctionalaptamerdoxorubicinconjugatecrossesthebloodbrainbarrierandselectivelydeliversitspayloadtoepcampositivetumorcells |