Cargando…

Mapping of three antigenic sites on the haemagglutinin-neuraminidase protein of Newcastle disease virus

Nine neutralizing monoclonal antibodies (MAbs), each of which react with the haemagglutinin-neuraminidase (HN) glycoprotein of the Beaudette C strain of Newcastle disease virus (NDV), have been used in competitive binding assays to delineate three non-overlapping antigenic sites A, B and C. Epitopes...

Descripción completa

Detalles Bibliográficos
Autores principales: Yusoff, Khatijah, Nesbit, Mark, McCartney, Hazel, Emmerson, Peter T., Samson, Anthony C.R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier B.V. 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7133837/
https://www.ncbi.nlm.nih.gov/pubmed/2464879
http://dx.doi.org/10.1016/0168-1702(88)90005-6
Descripción
Sumario:Nine neutralizing monoclonal antibodies (MAbs), each of which react with the haemagglutinin-neuraminidase (HN) glycoprotein of the Beaudette C strain of Newcastle disease virus (NDV), have been used in competitive binding assays to delineate three non-overlapping antigenic sites A, B and C. Epitopes within these sites have been identified on the basis of cross-reactivity of MAb-resistant mutants against the panel of MAbs, determined by plaque assays and Western blotting. Site A contains three non-overlapping epitopes (A1, A2 and A3). A1 is the only linear epitope; all remaining epitopes are conformational. MAbs which react with epitopes A2 and A3 inhibit neuraminidase activity (NA) when assayed with neuraminlactose. Site B contains three partially overlapping epitopes (B1, B2 and B3) and site C is represented by a single epitope (C1). HN gene sequence analysis of MAb-resistant mutants showed that they each had only single amino acid substitutions which range from amino acid residues 347–460 for site A, 284–325 for site B, and at 481 for the Cl epitope. The apparent molecular mass of the HN glycoprotein of one mutant was increased from 72 to 75 kDa. This correlates well with the creation of an additional potential glycosylation site in this mutant from Asn-Ser-Pro(325) to Asn-Ser-Ser(325).