Cargando…
Unsupervised Anomaly Detection of Healthcare Providers Using Generative Adversarial Networks
Healthcare fraud is considered a challenge for many societies. Health care funding that could be spent on medicine, care for the elderly or emergency room visits are instead lost to fraudulent activities by materialistic practitioners or patients. With rising healthcare costs, healthcare fraud is a...
Autores principales: | Naidoo, Krishnan, Marivate, Vukosi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7134221/ http://dx.doi.org/10.1007/978-3-030-44999-5_35 |
Ejemplares similares
-
Unsupervised anomaly detection with generative adversarial networks in mammography
por: Park, Seungju, et al.
Publicado: (2023) -
Publisher Correction: Unsupervised anomaly detection with generative adversarial networks in mammography
por: Park, Seungju, et al.
Publicado: (2023) -
Detecting Anomaly Event in Video Based on Generative Adversarial Network
por: Zhang, Zhaoxian
Publicado: (2022) -
Efficient Anomaly Detection with Generative Adversarial Network for Breast Ultrasound Imaging
por: Fujioka, Tomoyuki, et al.
Publicado: (2020) -
Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks
por: Wang, Xiaoqing, et al.
Publicado: (2018)