Cargando…
Predicting Information Diffusion on Twitter a Deep Learning Neural Network Model Using Custom Weighted Word Features
Researchers have been experimenting with various drivers of the diffusion rate like sentiment analysis which only considers the presence of certain words in a tweet. We theorize that the diffusion of particular content on Twitter can be driven by a sequence of nouns, adjectives, adverbs forming a se...
Autores principales: | Kushwaha, Amit Kumar, Kar, Arpan Kumar, Vigneswara Ilavarasan, P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7134238/ http://dx.doi.org/10.1007/978-3-030-44999-5_38 |
Ejemplares similares
-
Modelling the Service Experience Encounters Using User-Generated Content: A Text Mining Approach
por: Kar, Arpan Kumar, et al.
Publicado: (2021) -
Digital nations - smart cities, innovation, and sustainability: 16th IFIP WG 6. 11 conference on e-business, e-services, and e-society, I3E 2017, Delhi, India, November 21-23, 2017, proceedings
por: Kar, Arpan Kumar, et al.
Publicado: (2017) -
Small businesses and FinTech: a systematic review and future directions
por: Sharma, Sachin Kumar, et al.
Publicado: (2023) -
Identifying health related occupations of Twitter users through word embedding and deep neural networks
por: Zainab, Kazi, et al.
Publicado: (2022) -
Scaling in words on Twitter
por: Bokányi, Eszter, et al.
Publicado: (2019)