Cargando…
Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging
Photosynthesis is currently measured using time-laborious and/or destructive methods which slows research and breeding efforts to identify crop germplasm with higher photosynthetic capacities. We present a plot-level screening tool for quantification of photosynthetic parameters and pigment contents...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7134947/ https://www.ncbi.nlm.nih.gov/pubmed/32092145 http://dx.doi.org/10.1093/jxb/eraa068 |
_version_ | 1783517946704822272 |
---|---|
author | Meacham-Hensold, Katherine Fu, Peng Wu, Jin Serbin, Shawn Montes, Christopher M Ainsworth, Elizabeth Guan, Kaiyu Dracup, Evan Pederson, Taylor Driever, Steven Bernacchi, Carl |
author_facet | Meacham-Hensold, Katherine Fu, Peng Wu, Jin Serbin, Shawn Montes, Christopher M Ainsworth, Elizabeth Guan, Kaiyu Dracup, Evan Pederson, Taylor Driever, Steven Bernacchi, Carl |
author_sort | Meacham-Hensold, Katherine |
collection | PubMed |
description | Photosynthesis is currently measured using time-laborious and/or destructive methods which slows research and breeding efforts to identify crop germplasm with higher photosynthetic capacities. We present a plot-level screening tool for quantification of photosynthetic parameters and pigment contents that utilizes hyperspectral reflectance from sunlit leaf pixels collected from a plot (~2 m×2 m) in <1 min. Using field-grown Nicotiana tabacum with genetically altered photosynthetic pathways over two growing seasons (2017 and 2018), we built predictive models for eight photosynthetic parameters and pigment traits. Using partial least squares regression (PLSR) analysis of plot-level sunlit vegetative reflectance pixels from a single visible near infra-red (VNIR) (400–900 nm) hyperspectral camera, we predict maximum carboxylation rate of Rubisco (V(c,max), R(2)=0.79) maximum electron transport rate in given conditions (J(1800), R(2)=0.59), maximal light-saturated photosynthesis (P(max), R(2)=0.54), chlorophyll content (R(2)=0.87), the Chl a/b ratio (R(2)=0.63), carbon content (R(2)=0.47), and nitrogen content (R(2)=0.49). Model predictions did not improve when using two cameras spanning 400–1800 nm, suggesting a robust, widely applicable and more ‘cost-effective’ pipeline requiring only a single VNIR camera. The analysis pipeline and methods can be used in any cropping system with modified species-specific PLSR analysis to offer a high-throughput field phenotyping screening for germplasm with improved photosynthetic performance in field trials. |
format | Online Article Text |
id | pubmed-7134947 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-71349472020-04-10 Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging Meacham-Hensold, Katherine Fu, Peng Wu, Jin Serbin, Shawn Montes, Christopher M Ainsworth, Elizabeth Guan, Kaiyu Dracup, Evan Pederson, Taylor Driever, Steven Bernacchi, Carl J Exp Bot Research Papers Photosynthesis is currently measured using time-laborious and/or destructive methods which slows research and breeding efforts to identify crop germplasm with higher photosynthetic capacities. We present a plot-level screening tool for quantification of photosynthetic parameters and pigment contents that utilizes hyperspectral reflectance from sunlit leaf pixels collected from a plot (~2 m×2 m) in <1 min. Using field-grown Nicotiana tabacum with genetically altered photosynthetic pathways over two growing seasons (2017 and 2018), we built predictive models for eight photosynthetic parameters and pigment traits. Using partial least squares regression (PLSR) analysis of plot-level sunlit vegetative reflectance pixels from a single visible near infra-red (VNIR) (400–900 nm) hyperspectral camera, we predict maximum carboxylation rate of Rubisco (V(c,max), R(2)=0.79) maximum electron transport rate in given conditions (J(1800), R(2)=0.59), maximal light-saturated photosynthesis (P(max), R(2)=0.54), chlorophyll content (R(2)=0.87), the Chl a/b ratio (R(2)=0.63), carbon content (R(2)=0.47), and nitrogen content (R(2)=0.49). Model predictions did not improve when using two cameras spanning 400–1800 nm, suggesting a robust, widely applicable and more ‘cost-effective’ pipeline requiring only a single VNIR camera. The analysis pipeline and methods can be used in any cropping system with modified species-specific PLSR analysis to offer a high-throughput field phenotyping screening for germplasm with improved photosynthetic performance in field trials. Oxford University Press 2020-04-06 2020-02-24 /pmc/articles/PMC7134947/ /pubmed/32092145 http://dx.doi.org/10.1093/jxb/eraa068 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Papers Meacham-Hensold, Katherine Fu, Peng Wu, Jin Serbin, Shawn Montes, Christopher M Ainsworth, Elizabeth Guan, Kaiyu Dracup, Evan Pederson, Taylor Driever, Steven Bernacchi, Carl Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging |
title | Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging |
title_full | Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging |
title_fullStr | Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging |
title_full_unstemmed | Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging |
title_short | Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging |
title_sort | plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7134947/ https://www.ncbi.nlm.nih.gov/pubmed/32092145 http://dx.doi.org/10.1093/jxb/eraa068 |
work_keys_str_mv | AT meachamhensoldkatherine plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging AT fupeng plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging AT wujin plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging AT serbinshawn plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging AT monteschristopherm plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging AT ainsworthelizabeth plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging AT guankaiyu plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging AT dracupevan plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging AT pedersontaylor plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging AT drieversteven plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging AT bernacchicarl plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging |