Cargando…

Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging

Photosynthesis is currently measured using time-laborious and/or destructive methods which slows research and breeding efforts to identify crop germplasm with higher photosynthetic capacities. We present a plot-level screening tool for quantification of photosynthetic parameters and pigment contents...

Descripción completa

Detalles Bibliográficos
Autores principales: Meacham-Hensold, Katherine, Fu, Peng, Wu, Jin, Serbin, Shawn, Montes, Christopher M, Ainsworth, Elizabeth, Guan, Kaiyu, Dracup, Evan, Pederson, Taylor, Driever, Steven, Bernacchi, Carl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7134947/
https://www.ncbi.nlm.nih.gov/pubmed/32092145
http://dx.doi.org/10.1093/jxb/eraa068
_version_ 1783517946704822272
author Meacham-Hensold, Katherine
Fu, Peng
Wu, Jin
Serbin, Shawn
Montes, Christopher M
Ainsworth, Elizabeth
Guan, Kaiyu
Dracup, Evan
Pederson, Taylor
Driever, Steven
Bernacchi, Carl
author_facet Meacham-Hensold, Katherine
Fu, Peng
Wu, Jin
Serbin, Shawn
Montes, Christopher M
Ainsworth, Elizabeth
Guan, Kaiyu
Dracup, Evan
Pederson, Taylor
Driever, Steven
Bernacchi, Carl
author_sort Meacham-Hensold, Katherine
collection PubMed
description Photosynthesis is currently measured using time-laborious and/or destructive methods which slows research and breeding efforts to identify crop germplasm with higher photosynthetic capacities. We present a plot-level screening tool for quantification of photosynthetic parameters and pigment contents that utilizes hyperspectral reflectance from sunlit leaf pixels collected from a plot (~2 m×2 m) in <1 min. Using field-grown Nicotiana tabacum with genetically altered photosynthetic pathways over two growing seasons (2017 and 2018), we built predictive models for eight photosynthetic parameters and pigment traits. Using partial least squares regression (PLSR) analysis of plot-level sunlit vegetative reflectance pixels from a single visible near infra-red (VNIR) (400–900 nm) hyperspectral camera, we predict maximum carboxylation rate of Rubisco (V(c,max), R(2)=0.79) maximum electron transport rate in given conditions (J(1800), R(2)=0.59), maximal light-saturated photosynthesis (P(max), R(2)=0.54), chlorophyll content (R(2)=0.87), the Chl a/b ratio (R(2)=0.63), carbon content (R(2)=0.47), and nitrogen content (R(2)=0.49). Model predictions did not improve when using two cameras spanning 400–1800 nm, suggesting a robust, widely applicable and more ‘cost-effective’ pipeline requiring only a single VNIR camera. The analysis pipeline and methods can be used in any cropping system with modified species-specific PLSR analysis to offer a high-throughput field phenotyping screening for germplasm with improved photosynthetic performance in field trials.
format Online
Article
Text
id pubmed-7134947
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-71349472020-04-10 Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging Meacham-Hensold, Katherine Fu, Peng Wu, Jin Serbin, Shawn Montes, Christopher M Ainsworth, Elizabeth Guan, Kaiyu Dracup, Evan Pederson, Taylor Driever, Steven Bernacchi, Carl J Exp Bot Research Papers Photosynthesis is currently measured using time-laborious and/or destructive methods which slows research and breeding efforts to identify crop germplasm with higher photosynthetic capacities. We present a plot-level screening tool for quantification of photosynthetic parameters and pigment contents that utilizes hyperspectral reflectance from sunlit leaf pixels collected from a plot (~2 m×2 m) in <1 min. Using field-grown Nicotiana tabacum with genetically altered photosynthetic pathways over two growing seasons (2017 and 2018), we built predictive models for eight photosynthetic parameters and pigment traits. Using partial least squares regression (PLSR) analysis of plot-level sunlit vegetative reflectance pixels from a single visible near infra-red (VNIR) (400–900 nm) hyperspectral camera, we predict maximum carboxylation rate of Rubisco (V(c,max), R(2)=0.79) maximum electron transport rate in given conditions (J(1800), R(2)=0.59), maximal light-saturated photosynthesis (P(max), R(2)=0.54), chlorophyll content (R(2)=0.87), the Chl a/b ratio (R(2)=0.63), carbon content (R(2)=0.47), and nitrogen content (R(2)=0.49). Model predictions did not improve when using two cameras spanning 400–1800 nm, suggesting a robust, widely applicable and more ‘cost-effective’ pipeline requiring only a single VNIR camera. The analysis pipeline and methods can be used in any cropping system with modified species-specific PLSR analysis to offer a high-throughput field phenotyping screening for germplasm with improved photosynthetic performance in field trials. Oxford University Press 2020-04-06 2020-02-24 /pmc/articles/PMC7134947/ /pubmed/32092145 http://dx.doi.org/10.1093/jxb/eraa068 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Papers
Meacham-Hensold, Katherine
Fu, Peng
Wu, Jin
Serbin, Shawn
Montes, Christopher M
Ainsworth, Elizabeth
Guan, Kaiyu
Dracup, Evan
Pederson, Taylor
Driever, Steven
Bernacchi, Carl
Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging
title Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging
title_full Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging
title_fullStr Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging
title_full_unstemmed Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging
title_short Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging
title_sort plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7134947/
https://www.ncbi.nlm.nih.gov/pubmed/32092145
http://dx.doi.org/10.1093/jxb/eraa068
work_keys_str_mv AT meachamhensoldkatherine plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging
AT fupeng plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging
AT wujin plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging
AT serbinshawn plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging
AT monteschristopherm plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging
AT ainsworthelizabeth plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging
AT guankaiyu plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging
AT dracupevan plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging
AT pedersontaylor plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging
AT drieversteven plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging
AT bernacchicarl plotlevelrapidscreeningforphotosyntheticparametersusingproximalhyperspectralimaging