Cargando…
Modified linear regression predicts drug-target interactions accurately
State-of-the-art approaches for the prediction of drug–target interactions (DTI) are based on various techniques, such as matrix factorisation, restricted Boltzmann machines, network-based inference and bipartite local models (BLM). In this paper, we propose the framework of Asymmetric Loss Models (...
Autores principales: | Buza, Krisztian, Peška, Ladislav, Koller, Júlia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7135267/ https://www.ncbi.nlm.nih.gov/pubmed/32251481 http://dx.doi.org/10.1371/journal.pone.0230726 |
Ejemplares similares
-
DrugECs: An Ensemble System with Feature Subspaces for Accurate Drug-Target Interaction Prediction
por: Jiang, Jinjian, et al.
Publicado: (2017) -
Fine-tuning of BERT Model to Accurately Predict Drug–Target Interactions
por: Kang, Hyeunseok, et al.
Publicado: (2022) -
Modified Liu estimators in the linear regression model: An application to Tobacco data
por: Babar, Iqra, et al.
Publicado: (2021) -
Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model
por: Lukman, Adewale F., et al.
Publicado: (2020) -
Drug-Target Interaction Prediction through Label Propagation with Linear Neighborhood Information
por: Zhang, Wen, et al.
Publicado: (2017)