Cargando…
Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome
State-of-the-art machine learning (ML) artificial intelligence methods are increasingly leveraged in clinical predictive modeling to provide clinical decision support systems to physicians. Modern ML approaches such as artificial neural networks (ANNs) and tree boosting often perform better than mor...
Autores principales: | Zihni, Esra, Madai, Vince Istvan, Livne, Michelle, Galinovic, Ivana, Khalil, Ahmed A., Fiebach, Jochen B., Frey, Dietmar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7135268/ https://www.ncbi.nlm.nih.gov/pubmed/32251471 http://dx.doi.org/10.1371/journal.pone.0231166 |
Ejemplares similares
-
On the usage of average Hausdorff distance for segmentation performance assessment: hidden error when used for ranking
por: Aydin, Orhun Utku, et al.
Publicado: (2021) -
An evaluation of performance measures for arterial brain vessel segmentation
por: Aydin, Orhun Utku, et al.
Publicado: (2021) -
Correction: On the usage of average Hausdorff distance for segmentation performance assessment: hidden error when used for ranking
por: Aydin, Orhun Utku, et al.
Publicado: (2022) -
Anatomical labeling of intracranial arteries with deep learning in patients with cerebrovascular disease
por: Hilbert, Adam, et al.
Publicado: (2022) -
Outcome prediction in aneurysmal subarachnoid hemorrhage: a comparison of machine learning methods and established clinico-radiological scores
por: Dengler, Nora Franziska, et al.
Publicado: (2021)