Cargando…
Predicting mental health problems in adolescence using machine learning techniques
BACKGROUND: Predicting which children will go on to develop mental health symptoms as adolescents is critical for early intervention and preventing future, severe negative outcomes. Although many aspects of a child’s life, personality, and symptoms have been flagged as indicators, there is currently...
Autores principales: | Tate, Ashley E., McCabe, Ryan C., Larsson, Henrik, Lundström, Sebastian, Lichtenstein, Paul, Kuja-Halkola, Ralf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7135284/ https://www.ncbi.nlm.nih.gov/pubmed/32251439 http://dx.doi.org/10.1371/journal.pone.0230389 |
Ejemplares similares
-
Borderline personality disorder: associations with psychiatric disorders, somatic illnesses, trauma, and adverse behaviors
por: Tate, Ashley E., et al.
Publicado: (2022) -
Internalizing symptoms in adolescence are modestly affected by symptoms of anxiety, depression, and neurodevelopmental disorders in childhood
por: Doering, Sabrina, et al.
Publicado: (2022) -
Machine‐Learning prediction of comorbid substance use disorders in ADHD youth using Swedish registry data
por: Zhang‐James, Yanli, et al.
Publicado: (2020) -
Reproductive stoppage in autism spectrum disorder in a population of 2.5 million individuals
por: Kuja-Halkola, Ralf, et al.
Publicado: (2019) -
Sex Differences in Mental Health Problems and Psychiatric Hospitalization in Autistic Young Adults
por: Martini, Miriam I., et al.
Publicado: (2022)