Cargando…

Spectroscopic-network-assisted precision spectroscopy and its application to water

Frequency combs and cavity-enhanced optical techniques have revolutionized molecular spectroscopy: their combination allows recording saturated Doppler-free lines with ultrahigh precision. Network theory, based on the generalized Ritz principle, offers a powerful tool for the intelligent design and...

Descripción completa

Detalles Bibliográficos
Autores principales: Tóbiás, Roland, Furtenbacher, Tibor, Simkó, Irén, Császár, Attila G., Diouf, Meissa L., Cozijn, Frank M. J., Staa, Joey M. A., Salumbides, Edcel J., Ubachs, Wim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136255/
https://www.ncbi.nlm.nih.gov/pubmed/32249848
http://dx.doi.org/10.1038/s41467-020-15430-6
_version_ 1783518210575826944
author Tóbiás, Roland
Furtenbacher, Tibor
Simkó, Irén
Császár, Attila G.
Diouf, Meissa L.
Cozijn, Frank M. J.
Staa, Joey M. A.
Salumbides, Edcel J.
Ubachs, Wim
author_facet Tóbiás, Roland
Furtenbacher, Tibor
Simkó, Irén
Császár, Attila G.
Diouf, Meissa L.
Cozijn, Frank M. J.
Staa, Joey M. A.
Salumbides, Edcel J.
Ubachs, Wim
author_sort Tóbiás, Roland
collection PubMed
description Frequency combs and cavity-enhanced optical techniques have revolutionized molecular spectroscopy: their combination allows recording saturated Doppler-free lines with ultrahigh precision. Network theory, based on the generalized Ritz principle, offers a powerful tool for the intelligent design and validation of such precision-spectroscopy experiments and the subsequent derivation of accurate energy differences. As a proof of concept, 156 carefully-selected near-infrared transitions are detected for H(2)(16)O, a benchmark system of molecular spectroscopy, at kHz accuracy. These measurements, augmented with 28 extremely-accurate literature lines to ensure overall connectivity, allow the precise determination of the lowest ortho-H(2)(16)O energy, now set at 23.794 361 22(25) cm(−1), and 160 energy levels with similarly high accuracy. Based on the limited number of observed transitions, 1219 calibration-quality lines are obtained in a wide wavenumber interval, which can be used to improve spectroscopic databases and applied to frequency metrology, astrophysics, atmospheric sensing, and combustion chemistry.
format Online
Article
Text
id pubmed-7136255
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-71362552020-04-08 Spectroscopic-network-assisted precision spectroscopy and its application to water Tóbiás, Roland Furtenbacher, Tibor Simkó, Irén Császár, Attila G. Diouf, Meissa L. Cozijn, Frank M. J. Staa, Joey M. A. Salumbides, Edcel J. Ubachs, Wim Nat Commun Article Frequency combs and cavity-enhanced optical techniques have revolutionized molecular spectroscopy: their combination allows recording saturated Doppler-free lines with ultrahigh precision. Network theory, based on the generalized Ritz principle, offers a powerful tool for the intelligent design and validation of such precision-spectroscopy experiments and the subsequent derivation of accurate energy differences. As a proof of concept, 156 carefully-selected near-infrared transitions are detected for H(2)(16)O, a benchmark system of molecular spectroscopy, at kHz accuracy. These measurements, augmented with 28 extremely-accurate literature lines to ensure overall connectivity, allow the precise determination of the lowest ortho-H(2)(16)O energy, now set at 23.794 361 22(25) cm(−1), and 160 energy levels with similarly high accuracy. Based on the limited number of observed transitions, 1219 calibration-quality lines are obtained in a wide wavenumber interval, which can be used to improve spectroscopic databases and applied to frequency metrology, astrophysics, atmospheric sensing, and combustion chemistry. Nature Publishing Group UK 2020-04-06 /pmc/articles/PMC7136255/ /pubmed/32249848 http://dx.doi.org/10.1038/s41467-020-15430-6 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Tóbiás, Roland
Furtenbacher, Tibor
Simkó, Irén
Császár, Attila G.
Diouf, Meissa L.
Cozijn, Frank M. J.
Staa, Joey M. A.
Salumbides, Edcel J.
Ubachs, Wim
Spectroscopic-network-assisted precision spectroscopy and its application to water
title Spectroscopic-network-assisted precision spectroscopy and its application to water
title_full Spectroscopic-network-assisted precision spectroscopy and its application to water
title_fullStr Spectroscopic-network-assisted precision spectroscopy and its application to water
title_full_unstemmed Spectroscopic-network-assisted precision spectroscopy and its application to water
title_short Spectroscopic-network-assisted precision spectroscopy and its application to water
title_sort spectroscopic-network-assisted precision spectroscopy and its application to water
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136255/
https://www.ncbi.nlm.nih.gov/pubmed/32249848
http://dx.doi.org/10.1038/s41467-020-15430-6
work_keys_str_mv AT tobiasroland spectroscopicnetworkassistedprecisionspectroscopyanditsapplicationtowater
AT furtenbachertibor spectroscopicnetworkassistedprecisionspectroscopyanditsapplicationtowater
AT simkoiren spectroscopicnetworkassistedprecisionspectroscopyanditsapplicationtowater
AT csaszarattilag spectroscopicnetworkassistedprecisionspectroscopyanditsapplicationtowater
AT dioufmeissal spectroscopicnetworkassistedprecisionspectroscopyanditsapplicationtowater
AT cozijnfrankmj spectroscopicnetworkassistedprecisionspectroscopyanditsapplicationtowater
AT staajoeyma spectroscopicnetworkassistedprecisionspectroscopyanditsapplicationtowater
AT salumbidesedcelj spectroscopicnetworkassistedprecisionspectroscopyanditsapplicationtowater
AT ubachswim spectroscopicnetworkassistedprecisionspectroscopyanditsapplicationtowater