Cargando…

Current and Investigational Therapeutics for Fabry Disease

Fabry disease (FD) is an X-linked lysosomal storage disease caused by a deficiency in the lysosomal enzyme α-galactosidase (α-GAL). This in turn leads to the buildup of globotriaosylceramide, resulting classically in progressive kidney disease, peripheral neuropathy, early-onset cerebrovascular dise...

Descripción completa

Detalles Bibliográficos
Autores principales: Felis, Andrew, Whitlow, Michael, Kraus, Abigayle, Warnock, David G., Wallace, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136345/
https://www.ncbi.nlm.nih.gov/pubmed/32274449
http://dx.doi.org/10.1016/j.ekir.2019.11.013
_version_ 1783518228448804864
author Felis, Andrew
Whitlow, Michael
Kraus, Abigayle
Warnock, David G.
Wallace, Eric
author_facet Felis, Andrew
Whitlow, Michael
Kraus, Abigayle
Warnock, David G.
Wallace, Eric
author_sort Felis, Andrew
collection PubMed
description Fabry disease (FD) is an X-linked lysosomal storage disease caused by a deficiency in the lysosomal enzyme α-galactosidase (α-GAL). This in turn leads to the buildup of globotriaosylceramide, resulting classically in progressive kidney disease, peripheral neuropathy, early-onset cerebrovascular disease, gastrointestinal symptoms, hypertrophic cardiomyopathy, arrhythmias, corneal whorls, and angiokeratomas. The diagnosis of FD relies on identification of a low α-GAL enzyme activity, identification of a genetic mutation, or histologic evidence of disease. With more than 900 mutations identified, there is phenotypic variability deriving from both mutational effects as well as the effect of skewed X-inactivation in females. Treatment of this disease has relied on intravenous replacement of the deficient enzyme with agalsidase α or agalsidase β. However, treatment options for some patients with FD have recently expanded, with the approval of migalastat, an oral molecular chaperone. In addition to chaperone-based therapies, there are several additional therapies under development that could substantially reshape treatment options for patients with FD. Four approaches to gene therapy, through both ex vivo and in vivo methods, are under development. Another approach is through the administration of α-GAL mRNA to help stimulate production of α-GAL, which is another unique form of therapy. Finally, substrate reduction therapies act as inhibitors of glucosylceramide synthase, thus inhibiting the production of GB-3, promise another oral option to treat FD. This article will review the literature around current therapies as well as these newer therapeutics agents in the pipeline for FD.
format Online
Article
Text
id pubmed-7136345
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-71363452020-04-09 Current and Investigational Therapeutics for Fabry Disease Felis, Andrew Whitlow, Michael Kraus, Abigayle Warnock, David G. Wallace, Eric Kidney Int Rep Review Fabry disease (FD) is an X-linked lysosomal storage disease caused by a deficiency in the lysosomal enzyme α-galactosidase (α-GAL). This in turn leads to the buildup of globotriaosylceramide, resulting classically in progressive kidney disease, peripheral neuropathy, early-onset cerebrovascular disease, gastrointestinal symptoms, hypertrophic cardiomyopathy, arrhythmias, corneal whorls, and angiokeratomas. The diagnosis of FD relies on identification of a low α-GAL enzyme activity, identification of a genetic mutation, or histologic evidence of disease. With more than 900 mutations identified, there is phenotypic variability deriving from both mutational effects as well as the effect of skewed X-inactivation in females. Treatment of this disease has relied on intravenous replacement of the deficient enzyme with agalsidase α or agalsidase β. However, treatment options for some patients with FD have recently expanded, with the approval of migalastat, an oral molecular chaperone. In addition to chaperone-based therapies, there are several additional therapies under development that could substantially reshape treatment options for patients with FD. Four approaches to gene therapy, through both ex vivo and in vivo methods, are under development. Another approach is through the administration of α-GAL mRNA to help stimulate production of α-GAL, which is another unique form of therapy. Finally, substrate reduction therapies act as inhibitors of glucosylceramide synthase, thus inhibiting the production of GB-3, promise another oral option to treat FD. This article will review the literature around current therapies as well as these newer therapeutics agents in the pipeline for FD. Elsevier 2019-12-06 /pmc/articles/PMC7136345/ /pubmed/32274449 http://dx.doi.org/10.1016/j.ekir.2019.11.013 Text en © 2019 International Society of Nephrology. Published by Elsevier Inc. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Review
Felis, Andrew
Whitlow, Michael
Kraus, Abigayle
Warnock, David G.
Wallace, Eric
Current and Investigational Therapeutics for Fabry Disease
title Current and Investigational Therapeutics for Fabry Disease
title_full Current and Investigational Therapeutics for Fabry Disease
title_fullStr Current and Investigational Therapeutics for Fabry Disease
title_full_unstemmed Current and Investigational Therapeutics for Fabry Disease
title_short Current and Investigational Therapeutics for Fabry Disease
title_sort current and investigational therapeutics for fabry disease
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136345/
https://www.ncbi.nlm.nih.gov/pubmed/32274449
http://dx.doi.org/10.1016/j.ekir.2019.11.013
work_keys_str_mv AT felisandrew currentandinvestigationaltherapeuticsforfabrydisease
AT whitlowmichael currentandinvestigationaltherapeuticsforfabrydisease
AT krausabigayle currentandinvestigationaltherapeuticsforfabrydisease
AT warnockdavidg currentandinvestigationaltherapeuticsforfabrydisease
AT wallaceeric currentandinvestigationaltherapeuticsforfabrydisease