Cargando…
Comparison and Fusion of Deep Learning and Radiomics Features of Ground-Glass Nodules to Predict the Invasiveness Risk of Stage-I Lung Adenocarcinomas in CT Scan
For stage-I lung adenocarcinoma, the 5-years disease-free survival (DFS) rates of non-invasive adenocarcinoma (non-IA) is different with invasive adenocarcinoma (IA). This study aims to develop CT image based artificial intelligence (AI) schemes to classify between non-IA and IA nodules, and incorpo...
Autores principales: | Xia, Xianwu, Gong, Jing, Hao, Wen, Yang, Ting, Lin, Yeqing, Wang, Shengping, Peng, Weijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136522/ https://www.ncbi.nlm.nih.gov/pubmed/32296645 http://dx.doi.org/10.3389/fonc.2020.00418 |
Ejemplares similares
-
Predicting the invasiveness of lung adenocarcinomas appearing as ground-glass nodule on CT scan using multi-task learning and deep radiomics
por: Wang, Xiang, et al.
Publicado: (2020) -
The Growth Trend Predictions in Pulmonary Ground Glass Nodules Based on Radiomic CT Features
por: Gao, Chen, et al.
Publicado: (2020) -
Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma
por: Xu, Fangyi, et al.
Publicado: (2020) -
Dual-energy CT-based radiomics for predicting invasiveness of lung adenocarcinoma appearing as ground-glass nodules
por: Zheng, Yuting, et al.
Publicado: (2023) -
Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction
por: Sun, Yingli, et al.
Publicado: (2020)