Cargando…
More than flipping the lid: Cdc50 contributes to echinocandin resistance by regulating calcium homeostasis in Cryptococcus neoformans
Echinocandins are the newest fungicidal drug class approved for clinical use against common invasive mycoses. Yet, they are ineffective against cryptococcosis, predominantly caused by Cryptococcus neoformans. The underlying mechanisms of innate echinocandin resistance in C. neoformans remain unclear...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shared Science Publishers OG
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136755/ https://www.ncbi.nlm.nih.gov/pubmed/32274390 http://dx.doi.org/10.15698/mic2020.04.714 |
_version_ | 1783518307898359808 |
---|---|
author | Cao, Chengjun Xue, Chaoyang |
author_facet | Cao, Chengjun Xue, Chaoyang |
author_sort | Cao, Chengjun |
collection | PubMed |
description | Echinocandins are the newest fungicidal drug class approved for clinical use against common invasive mycoses. Yet, they are ineffective against cryptococcosis, predominantly caused by Cryptococcus neoformans. The underlying mechanisms of innate echinocandin resistance in C. neoformans remain unclear. We know that Cdc50, the β-subunit of the lipid translocase (flippase), mediates echinocandin resistance, as loss of the CDC50 gene sensitizes C. neoformans to caspofungin, a member of the echinocandins class. We sought to elucidate how Cdc50 facilitates caspofungin resistance by performing a forward genetic screen for cdc50Δ suppressor mutations that are caspofungin resistant. We identified a novel mechanosensitive calcium channel protein Crm1 that correlates with Cdc50 function (Cao et al., 2019). In addition to regulating phospholipid translocation, Cdc50 also interacts with Crm1 to regulate intracellular calcium homeostasis and calcium/calcineurin signaling that likely drives caspofungin resistance in C. neoformans. Our study revealed a novel dual function of Cdc50 that connects lipid flippase with calcium signaling. These unexpected findings provide new insights into the mechanisms of echinocandin resistance in C. neoformans that may drive future drug design. |
format | Online Article Text |
id | pubmed-7136755 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Shared Science Publishers OG |
record_format | MEDLINE/PubMed |
spelling | pubmed-71367552020-04-09 More than flipping the lid: Cdc50 contributes to echinocandin resistance by regulating calcium homeostasis in Cryptococcus neoformans Cao, Chengjun Xue, Chaoyang Microb Cell Microreview Echinocandins are the newest fungicidal drug class approved for clinical use against common invasive mycoses. Yet, they are ineffective against cryptococcosis, predominantly caused by Cryptococcus neoformans. The underlying mechanisms of innate echinocandin resistance in C. neoformans remain unclear. We know that Cdc50, the β-subunit of the lipid translocase (flippase), mediates echinocandin resistance, as loss of the CDC50 gene sensitizes C. neoformans to caspofungin, a member of the echinocandins class. We sought to elucidate how Cdc50 facilitates caspofungin resistance by performing a forward genetic screen for cdc50Δ suppressor mutations that are caspofungin resistant. We identified a novel mechanosensitive calcium channel protein Crm1 that correlates with Cdc50 function (Cao et al., 2019). In addition to regulating phospholipid translocation, Cdc50 also interacts with Crm1 to regulate intracellular calcium homeostasis and calcium/calcineurin signaling that likely drives caspofungin resistance in C. neoformans. Our study revealed a novel dual function of Cdc50 that connects lipid flippase with calcium signaling. These unexpected findings provide new insights into the mechanisms of echinocandin resistance in C. neoformans that may drive future drug design. Shared Science Publishers OG 2020-02-20 /pmc/articles/PMC7136755/ /pubmed/32274390 http://dx.doi.org/10.15698/mic2020.04.714 Text en Copyright: © 2020 Cao and Xue https://creativecommons.org/licenses/by/4.0/ This is an open-access article released under the terms of the Creative Commons Attribution (CC BY) license, which allows the unrestricted use, distribution, and reproduction in any medium, provided the original author and source are acknowledged. |
spellingShingle | Microreview Cao, Chengjun Xue, Chaoyang More than flipping the lid: Cdc50 contributes to echinocandin resistance by regulating calcium homeostasis in Cryptococcus neoformans |
title | More than flipping the lid: Cdc50 contributes to echinocandin resistance by regulating calcium homeostasis in Cryptococcus neoformans |
title_full | More than flipping the lid: Cdc50 contributes to echinocandin resistance by regulating calcium homeostasis in Cryptococcus neoformans |
title_fullStr | More than flipping the lid: Cdc50 contributes to echinocandin resistance by regulating calcium homeostasis in Cryptococcus neoformans |
title_full_unstemmed | More than flipping the lid: Cdc50 contributes to echinocandin resistance by regulating calcium homeostasis in Cryptococcus neoformans |
title_short | More than flipping the lid: Cdc50 contributes to echinocandin resistance by regulating calcium homeostasis in Cryptococcus neoformans |
title_sort | more than flipping the lid: cdc50 contributes to echinocandin resistance by regulating calcium homeostasis in cryptococcus neoformans |
topic | Microreview |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136755/ https://www.ncbi.nlm.nih.gov/pubmed/32274390 http://dx.doi.org/10.15698/mic2020.04.714 |
work_keys_str_mv | AT caochengjun morethanflippingthelidcdc50contributestoechinocandinresistancebyregulatingcalciumhomeostasisincryptococcusneoformans AT xuechaoyang morethanflippingthelidcdc50contributestoechinocandinresistancebyregulatingcalciumhomeostasisincryptococcusneoformans |