Cargando…
Omega, Sadhana, and PI Polynomials of Quasi-Hexagonal Benzenoid Chain
Counting polynomials are important graph invariants whose coefficients and exponents are related to different properties of chemical graphs. Three closely related polynomials, i.e., Omega, Sadhana, and PI polynomials, dependent upon the equidistant edges and nonequidistant edges of graphs, are studi...
Autores principales: | Idrees, Nazeran, Saif, Muhammad Jawwad, Nasir, Sumiya, Farooq, Fozia Bashir, Rauf, Asia, Ashfaq, Fareeha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136778/ https://www.ncbi.nlm.nih.gov/pubmed/32309011 http://dx.doi.org/10.1155/2020/9057815 |
Ejemplares similares
-
QSPR Modeling of Fungicides Using Topological Descriptors
por: Parveen, Saima, et al.
Publicado: (2023) -
Certain polynomials and related topological indices for the series of benzenoid graphs
por: Nadeem, Muhammad, et al.
Publicado: (2019) -
Computing Topological Invariants of Deep Neural Networks
por: Zhang, Xiujun, et al.
Publicado: (2022) -
QSPR Analysis of
Drugs for Treatment of Schizophrenia
Using Topological Indices
por: Zhang, Xiujun, et al.
Publicado: (2023) -
Theoretical and Experimental Insights of Benzimidazole Catalyzed by the Epoxy–Acrylic Acid Reaction
por: Saif, Muhammad Jawwad, et al.
Publicado: (2022)