Cargando…
Learning Latent Space Representations to Predict Patient Outcomes: Model Development and Validation
BACKGROUND: Scalable and accurate health outcome prediction using electronic health record (EHR) data has gained much attention in research recently. Previous machine learning models mostly ignore relations between different types of clinical data (ie, laboratory components, International Classifica...
Autores principales: | Rongali, Subendhu, Rose, Adam J, McManus, David D, Bajracharya, Adarsha S, Kapoor, Alok, Granillo, Edgard, Yu, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136840/ https://www.ncbi.nlm.nih.gov/pubmed/32202503 http://dx.doi.org/10.2196/16374 |
Ejemplares similares
-
Predicting chemical ecotoxicity by learning latent space chemical representations
por: Gao, Feng, et al.
Publicado: (2022) -
Predictive learning as a network mechanism for extracting low-dimensional latent space representations
por: Recanatesi, Stefano, et al.
Publicado: (2021) -
Generating Medical Assessments Using a Neural Network Model: Algorithm Development and Validation
por: Hu, Baotian, et al.
Publicado: (2020) -
Multimodal sensor fusion in the latent representation space
por: Piechocki, Robert J., et al.
Publicado: (2023) -
Learning meaningful latent space representations for patient risk stratification: Model development and validation for dengue and other acute febrile illness
por: Hernandez, Bernard, et al.
Publicado: (2023)