Cargando…
The Influence of the Ligand in the Iridium Mediated Electrocatalyic Water Oxidation
[Image: see text] Electrochemical water oxidation is the bottleneck of electrolyzers as even the best catalysts, iridium and ruthenium oxides, have to operate at significant overpotentials. Previously, the position of a hydroxyl on a series of hydroxylpicolinate ligands was found to significantly in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137537/ https://www.ncbi.nlm.nih.gov/pubmed/32280560 http://dx.doi.org/10.1021/acscatal.0c00531 |
_version_ | 1783518448056270848 |
---|---|
author | van Dijk, Bas Rodriguez, Gabriel Menendez Wu, Longfei Hofmann, Jan P. Macchioni, Alceo Hetterscheid, Dennis G. H. |
author_facet | van Dijk, Bas Rodriguez, Gabriel Menendez Wu, Longfei Hofmann, Jan P. Macchioni, Alceo Hetterscheid, Dennis G. H. |
author_sort | van Dijk, Bas |
collection | PubMed |
description | [Image: see text] Electrochemical water oxidation is the bottleneck of electrolyzers as even the best catalysts, iridium and ruthenium oxides, have to operate at significant overpotentials. Previously, the position of a hydroxyl on a series of hydroxylpicolinate ligands was found to significantly influence the activity of molecular iridium catalysts in sacrificial oxidant driven water oxidation. In this study, these catalysts were tested under electrochemical conditions and benchmarked to several other known molecular iridium catalysts under the exact same conditions. This allowed us to compare these catalysts directly and observe whether structure–activity relationships would prevail under electrochemical conditions. Using both electrochemical quartz crystal microbalance experiments and X-ray photoelectron spectroscopy, we found that all studied iridium complexes form an iridium deposit on the electrode with binding energies ranging from 62.4 to 62.7 eV for the major Ir 4f(7/2) species. These do not match the binding energies found for the parent complexes, which have a broader binding energy range from 61.7 to 62.7 eV and show a clear relationship to the electronegativity induced by the ligands. Moreover, all catalysts performed the electrochemical water oxidation in the same order of magnitude as the maximum currents ranged from 0.2 to 0.6 mA cm(–2) once more without clear structure–activity relationships. In addition, by employing (1)H NMR spectroscopy we found evidence for Cp* breakdown products such as acetate. Electrodeposited iridium oxide from ligand free [Ir(OH)(6)](2–) or a colloidal iridium oxide nanoparticles solution produces currents almost 2 orders of magnitude higher with a maximum current of 11 mA cm(–2). Also, this deposited material contains, apart from an Ir 4f(7/2) species at 62.4 eV, an Ir species at 63.6 eV, which is not observed for any deposit formed by the molecular complexes. Thus, the electrodeposited material of the complexes cannot be directly linked to bulk iridium oxide. Small IrO(x) clusters containing few Ir atoms with partially incorporated ligand residues are the most likely option for the catalytically active electrodeposit. Our results emphasize that structure–activity relationships obtained with sacrificial oxidants do not necessarily translate to electrochemical conditions. Furthermore, other factors, such as electrodeposition and catalyst degradation, play a major role in the electrochemically driven water oxidation and should thus be considered when optimizing molecular catalysts. |
format | Online Article Text |
id | pubmed-7137537 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-71375372020-04-08 The Influence of the Ligand in the Iridium Mediated Electrocatalyic Water Oxidation van Dijk, Bas Rodriguez, Gabriel Menendez Wu, Longfei Hofmann, Jan P. Macchioni, Alceo Hetterscheid, Dennis G. H. ACS Catal [Image: see text] Electrochemical water oxidation is the bottleneck of electrolyzers as even the best catalysts, iridium and ruthenium oxides, have to operate at significant overpotentials. Previously, the position of a hydroxyl on a series of hydroxylpicolinate ligands was found to significantly influence the activity of molecular iridium catalysts in sacrificial oxidant driven water oxidation. In this study, these catalysts were tested under electrochemical conditions and benchmarked to several other known molecular iridium catalysts under the exact same conditions. This allowed us to compare these catalysts directly and observe whether structure–activity relationships would prevail under electrochemical conditions. Using both electrochemical quartz crystal microbalance experiments and X-ray photoelectron spectroscopy, we found that all studied iridium complexes form an iridium deposit on the electrode with binding energies ranging from 62.4 to 62.7 eV for the major Ir 4f(7/2) species. These do not match the binding energies found for the parent complexes, which have a broader binding energy range from 61.7 to 62.7 eV and show a clear relationship to the electronegativity induced by the ligands. Moreover, all catalysts performed the electrochemical water oxidation in the same order of magnitude as the maximum currents ranged from 0.2 to 0.6 mA cm(–2) once more without clear structure–activity relationships. In addition, by employing (1)H NMR spectroscopy we found evidence for Cp* breakdown products such as acetate. Electrodeposited iridium oxide from ligand free [Ir(OH)(6)](2–) or a colloidal iridium oxide nanoparticles solution produces currents almost 2 orders of magnitude higher with a maximum current of 11 mA cm(–2). Also, this deposited material contains, apart from an Ir 4f(7/2) species at 62.4 eV, an Ir species at 63.6 eV, which is not observed for any deposit formed by the molecular complexes. Thus, the electrodeposited material of the complexes cannot be directly linked to bulk iridium oxide. Small IrO(x) clusters containing few Ir atoms with partially incorporated ligand residues are the most likely option for the catalytically active electrodeposit. Our results emphasize that structure–activity relationships obtained with sacrificial oxidants do not necessarily translate to electrochemical conditions. Furthermore, other factors, such as electrodeposition and catalyst degradation, play a major role in the electrochemically driven water oxidation and should thus be considered when optimizing molecular catalysts. American Chemical Society 2020-03-17 2020-04-03 /pmc/articles/PMC7137537/ /pubmed/32280560 http://dx.doi.org/10.1021/acscatal.0c00531 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | van Dijk, Bas Rodriguez, Gabriel Menendez Wu, Longfei Hofmann, Jan P. Macchioni, Alceo Hetterscheid, Dennis G. H. The Influence of the Ligand in the Iridium Mediated Electrocatalyic Water Oxidation |
title | The Influence of the Ligand in the Iridium Mediated
Electrocatalyic Water Oxidation |
title_full | The Influence of the Ligand in the Iridium Mediated
Electrocatalyic Water Oxidation |
title_fullStr | The Influence of the Ligand in the Iridium Mediated
Electrocatalyic Water Oxidation |
title_full_unstemmed | The Influence of the Ligand in the Iridium Mediated
Electrocatalyic Water Oxidation |
title_short | The Influence of the Ligand in the Iridium Mediated
Electrocatalyic Water Oxidation |
title_sort | influence of the ligand in the iridium mediated
electrocatalyic water oxidation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137537/ https://www.ncbi.nlm.nih.gov/pubmed/32280560 http://dx.doi.org/10.1021/acscatal.0c00531 |
work_keys_str_mv | AT vandijkbas theinfluenceoftheligandintheiridiummediatedelectrocatalyicwateroxidation AT rodriguezgabrielmenendez theinfluenceoftheligandintheiridiummediatedelectrocatalyicwateroxidation AT wulongfei theinfluenceoftheligandintheiridiummediatedelectrocatalyicwateroxidation AT hofmannjanp theinfluenceoftheligandintheiridiummediatedelectrocatalyicwateroxidation AT macchionialceo theinfluenceoftheligandintheiridiummediatedelectrocatalyicwateroxidation AT hetterscheiddennisgh theinfluenceoftheligandintheiridiummediatedelectrocatalyicwateroxidation AT vandijkbas influenceoftheligandintheiridiummediatedelectrocatalyicwateroxidation AT rodriguezgabrielmenendez influenceoftheligandintheiridiummediatedelectrocatalyicwateroxidation AT wulongfei influenceoftheligandintheiridiummediatedelectrocatalyicwateroxidation AT hofmannjanp influenceoftheligandintheiridiummediatedelectrocatalyicwateroxidation AT macchionialceo influenceoftheligandintheiridiummediatedelectrocatalyicwateroxidation AT hetterscheiddennisgh influenceoftheligandintheiridiummediatedelectrocatalyicwateroxidation |