Cargando…
A comparison of approximate versus exact techniques for Bayesian parameter inference in nonlinear ordinary differential equation models
The behaviour of many processes in science and engineering can be accurately described by dynamical system models consisting of a set of ordinary differential equations (ODEs). Often these models have several unknown parameters that are difficult to estimate from experimental data, in which case Bay...
Autores principales: | Alahmadi, Amani A., Flegg, Jennifer A., Cochrane, Davis G., Drovandi, Christopher C., Keith, Jonathan M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137938/ https://www.ncbi.nlm.nih.gov/pubmed/32269786 http://dx.doi.org/10.1098/rsos.191315 |
Ejemplares similares
-
Nonlinear ordinary differential equations: analytical approximation and numerical methods
por: Hermann, Martin, et al.
Publicado: (2016) -
Numerical method for parameter inference of systems of nonlinear ordinary differential equations with partial observations
por: Chen, Yu, et al.
Publicado: (2021) -
Handbook of exact solutions for ordinary differential equations
por: Polyanin, Andrei Dmitrievich, et al.
Publicado: (1995) -
Handbook of Exact Solutions for Ordinary Differential Equations
por: Polyanin, Andrei Dmitrievich
Publicado: (2002) -
Nonlinear ordinary differential equations
por: Jordan, Dominic William, et al.
Publicado: (1977)