Cargando…
Bayesian integrative analysis of epigenomic and transcriptomic data identifies Alzheimer's disease candidate genes and networks
Biomedical research studies have generated large multi-omic datasets to study complex diseases like Alzheimer’s disease (AD). An important aim of these studies is the identification of candidate genes that demonstrate congruent disease-related alterations across the different data types measured by...
Autores principales: | Klein, Hans-Ulrich, Schäfer, Martin, Bennett, David A., Schwender, Holger, De Jager, Philip L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138305/ https://www.ncbi.nlm.nih.gov/pubmed/32255787 http://dx.doi.org/10.1371/journal.pcbi.1007771 |
Ejemplares similares
-
An integrated transcriptome and epigenome analysis identifies a novel candidate gene for pancreatic cancer
por: Jia, Jinping, et al.
Publicado: (2013) -
Unified epigenomic, transcriptomic, proteomic, and metabolomic taxonomy of Alzheimer’s disease progression and heterogeneity
por: Iturria-Medina, Yasser, et al.
Publicado: (2022) -
An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome
por: Ng, B, et al.
Publicado: (2017) -
A Bayesian Framework for Generalized Linear Mixed Modeling Identifies New Candidate Loci for Late-Onset Alzheimer’s Disease
por: Wang, Xulong, et al.
Publicado: (2018) -
Functional Variants Identified Efficiently through an Integrated Transcriptome and Epigenome Analysis
por: Meng, Fanlin, et al.
Publicado: (2018)