Cargando…
MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice
Small-animal imaging is an essential tool that provides noninvasive, longitudinal insight into novel cancer therapies. However, considerable variability in image analysis techniques can lead to inconsistent results. We have developed quantitative imaging for application in the preclinical arm of a c...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138523/ https://www.ncbi.nlm.nih.gov/pubmed/32280747 http://dx.doi.org/10.18383/j.tom.2019.00021 |
_version_ | 1783518586796507136 |
---|---|
author | Holbrook, M. D. Blocker, S. J. Mowery, Y. M. Badea, A. Qi, Y. Xu, E. S. Kirsch, D. G. Johnson, G. A. Badea, C. T. |
author_facet | Holbrook, M. D. Blocker, S. J. Mowery, Y. M. Badea, A. Qi, Y. Xu, E. S. Kirsch, D. G. Johnson, G. A. Badea, C. T. |
author_sort | Holbrook, M. D. |
collection | PubMed |
description | Small-animal imaging is an essential tool that provides noninvasive, longitudinal insight into novel cancer therapies. However, considerable variability in image analysis techniques can lead to inconsistent results. We have developed quantitative imaging for application in the preclinical arm of a coclinical trial by using a genetically engineered mouse model of soft tissue sarcoma. Magnetic resonance imaging (MRI) images were acquired 1 day before and 1 week after radiation therapy. After the second MRI, the primary tumor was surgically removed by amputating the tumor-bearing hind limb, and mice were followed for up to 6 months. An automatic analysis pipeline was used for multicontrast MRI data using a convolutional neural network for tumor segmentation followed by radiomics analysis. We then calculated radiomics features for the tumor, the peritumoral area, and the 2 combined. The first radiomics analysis focused on features most indicative of radiation therapy effects; the second radiomics analysis looked for features that might predict primary tumor recurrence. The segmentation results indicated that Dice scores were similar when using multicontrast versus single T2-weighted data (0.863 vs 0.861). One week post RT, larger tumor volumes were measured, and radiomics analysis showed greater heterogeneity. In the tumor and peritumoral area, radiomics features were predictive of primary tumor recurrence (AUC: 0.79). We have created an image processing pipeline for high-throughput, reduced-bias segmentation of multiparametric tumor MRI data and radiomics analysis, to better our understanding of preclinical imaging and the insights it provides when studying new cancer therapies. |
format | Online Article Text |
id | pubmed-7138523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Grapho Publications, LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-71385232020-04-11 MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice Holbrook, M. D. Blocker, S. J. Mowery, Y. M. Badea, A. Qi, Y. Xu, E. S. Kirsch, D. G. Johnson, G. A. Badea, C. T. Tomography Research Article Small-animal imaging is an essential tool that provides noninvasive, longitudinal insight into novel cancer therapies. However, considerable variability in image analysis techniques can lead to inconsistent results. We have developed quantitative imaging for application in the preclinical arm of a coclinical trial by using a genetically engineered mouse model of soft tissue sarcoma. Magnetic resonance imaging (MRI) images were acquired 1 day before and 1 week after radiation therapy. After the second MRI, the primary tumor was surgically removed by amputating the tumor-bearing hind limb, and mice were followed for up to 6 months. An automatic analysis pipeline was used for multicontrast MRI data using a convolutional neural network for tumor segmentation followed by radiomics analysis. We then calculated radiomics features for the tumor, the peritumoral area, and the 2 combined. The first radiomics analysis focused on features most indicative of radiation therapy effects; the second radiomics analysis looked for features that might predict primary tumor recurrence. The segmentation results indicated that Dice scores were similar when using multicontrast versus single T2-weighted data (0.863 vs 0.861). One week post RT, larger tumor volumes were measured, and radiomics analysis showed greater heterogeneity. In the tumor and peritumoral area, radiomics features were predictive of primary tumor recurrence (AUC: 0.79). We have created an image processing pipeline for high-throughput, reduced-bias segmentation of multiparametric tumor MRI data and radiomics analysis, to better our understanding of preclinical imaging and the insights it provides when studying new cancer therapies. Grapho Publications, LLC 2020-03 /pmc/articles/PMC7138523/ /pubmed/32280747 http://dx.doi.org/10.18383/j.tom.2019.00021 Text en © 2020 The Authors. Published by Grapho Publications, LLC http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Holbrook, M. D. Blocker, S. J. Mowery, Y. M. Badea, A. Qi, Y. Xu, E. S. Kirsch, D. G. Johnson, G. A. Badea, C. T. MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice |
title | MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice |
title_full | MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice |
title_fullStr | MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice |
title_full_unstemmed | MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice |
title_short | MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice |
title_sort | mri-based deep learning segmentation and radiomics of sarcoma in mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138523/ https://www.ncbi.nlm.nih.gov/pubmed/32280747 http://dx.doi.org/10.18383/j.tom.2019.00021 |
work_keys_str_mv | AT holbrookmd mribaseddeeplearningsegmentationandradiomicsofsarcomainmice AT blockersj mribaseddeeplearningsegmentationandradiomicsofsarcomainmice AT moweryym mribaseddeeplearningsegmentationandradiomicsofsarcomainmice AT badeaa mribaseddeeplearningsegmentationandradiomicsofsarcomainmice AT qiy mribaseddeeplearningsegmentationandradiomicsofsarcomainmice AT xues mribaseddeeplearningsegmentationandradiomicsofsarcomainmice AT kirschdg mribaseddeeplearningsegmentationandradiomicsofsarcomainmice AT johnsonga mribaseddeeplearningsegmentationandradiomicsofsarcomainmice AT badeact mribaseddeeplearningsegmentationandradiomicsofsarcomainmice |