Cargando…
Whole-transcriptome analysis reveals a potential hsa_circ_0001955/hsa_circ_0000977-mediated miRNA-mRNA regulatory sub-network in colorectal cancer
Background: Circular RNAs (circRNAs), a novel class of non-coding RNAs, have been found to act as microRNA (miRNA) sponges and thus play key roles in biological processes and pathogenesis. However, studies regarding circRNAs in colorectal cancer (CRC) remain inadequate. Results: By differential expr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138558/ https://www.ncbi.nlm.nih.gov/pubmed/32221048 http://dx.doi.org/10.18632/aging.102945 |
_version_ | 1783518594413363200 |
---|---|
author | Ding, Bisha Yao, Minya Fan, Weimin Lou, Weiyang |
author_facet | Ding, Bisha Yao, Minya Fan, Weimin Lou, Weiyang |
author_sort | Ding, Bisha |
collection | PubMed |
description | Background: Circular RNAs (circRNAs), a novel class of non-coding RNAs, have been found to act as microRNA (miRNA) sponges and thus play key roles in biological processes and pathogenesis. However, studies regarding circRNAs in colorectal cancer (CRC) remain inadequate. Results: By differential expression analysis, 10 candidate circRNAs (6 upregulated and 4 downregulated circRNAs) were chosen. 9 of 10 circRNAs were available on CSCD and their structure showed the binding potential of miRNA. Intersection analysis revealed that miR-145-5p, miR-3127-5p, miR-761, miR-4766-3p, miR-135a-5p, miR-135b-5p, miR-374a-3p and miR-330-3p were 8 miRNAs with the most potential in binding circRNAs. Further expression validation and correlation analysis demonstrated hsa_circ_0001955/miR-145-5p and hsa_circ_0000977/miR-135b-5p axes as key pathways in CRC. Subsequently, target gene prediction, differential expression analysis, intersection analysis and correlation analysis showed that CDK6, MMP12 and RAB3IP were the three potential downstream targets of hsa_circ_0001955/miR-145-5p axis and FOXO1, MBNL1, MEF2C, RECK, PPM1E, TTLL7 and PCP4L1 were the seven potential downstream targets of hsa_circ_0000977/miR-135b-5p axis in CRC. Finally, we also confirmed that expression of hsa_circ_0001955 or hsa_circ_0000977 was significantly positively correlated with their individual targets in CRC. Conclusions: In the present work, we constructed a potential hsa_circ_0001955/hsa_circ_0000977-mediated circRNA-miRNA-mRNA regulatory network in CRC by a series of in silico analysis and experimental validation. Methods: Whole-transcriptome microarrays from CRC and matched normal samples were obtained from GEO. The structure of circRNA was identified by CSCD. starBase and miRNet were successively used to predict miRNA of circRNA and target gene of miRNA. Expression correlation between RNA-RNA interactions was assessed using GEO and TCGA data. Finally, a potential circRNA-miRNA-mRNA network was established based on competing endogenous RNA (ceRNA) hypothesis. |
format | Online Article Text |
id | pubmed-7138558 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Impact Journals |
record_format | MEDLINE/PubMed |
spelling | pubmed-71385582020-04-13 Whole-transcriptome analysis reveals a potential hsa_circ_0001955/hsa_circ_0000977-mediated miRNA-mRNA regulatory sub-network in colorectal cancer Ding, Bisha Yao, Minya Fan, Weimin Lou, Weiyang Aging (Albany NY) Research Paper Background: Circular RNAs (circRNAs), a novel class of non-coding RNAs, have been found to act as microRNA (miRNA) sponges and thus play key roles in biological processes and pathogenesis. However, studies regarding circRNAs in colorectal cancer (CRC) remain inadequate. Results: By differential expression analysis, 10 candidate circRNAs (6 upregulated and 4 downregulated circRNAs) were chosen. 9 of 10 circRNAs were available on CSCD and their structure showed the binding potential of miRNA. Intersection analysis revealed that miR-145-5p, miR-3127-5p, miR-761, miR-4766-3p, miR-135a-5p, miR-135b-5p, miR-374a-3p and miR-330-3p were 8 miRNAs with the most potential in binding circRNAs. Further expression validation and correlation analysis demonstrated hsa_circ_0001955/miR-145-5p and hsa_circ_0000977/miR-135b-5p axes as key pathways in CRC. Subsequently, target gene prediction, differential expression analysis, intersection analysis and correlation analysis showed that CDK6, MMP12 and RAB3IP were the three potential downstream targets of hsa_circ_0001955/miR-145-5p axis and FOXO1, MBNL1, MEF2C, RECK, PPM1E, TTLL7 and PCP4L1 were the seven potential downstream targets of hsa_circ_0000977/miR-135b-5p axis in CRC. Finally, we also confirmed that expression of hsa_circ_0001955 or hsa_circ_0000977 was significantly positively correlated with their individual targets in CRC. Conclusions: In the present work, we constructed a potential hsa_circ_0001955/hsa_circ_0000977-mediated circRNA-miRNA-mRNA regulatory network in CRC by a series of in silico analysis and experimental validation. Methods: Whole-transcriptome microarrays from CRC and matched normal samples were obtained from GEO. The structure of circRNA was identified by CSCD. starBase and miRNet were successively used to predict miRNA of circRNA and target gene of miRNA. Expression correlation between RNA-RNA interactions was assessed using GEO and TCGA data. Finally, a potential circRNA-miRNA-mRNA network was established based on competing endogenous RNA (ceRNA) hypothesis. Impact Journals 2020-03-28 /pmc/articles/PMC7138558/ /pubmed/32221048 http://dx.doi.org/10.18632/aging.102945 Text en Copyright © 2020 Ding et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Ding, Bisha Yao, Minya Fan, Weimin Lou, Weiyang Whole-transcriptome analysis reveals a potential hsa_circ_0001955/hsa_circ_0000977-mediated miRNA-mRNA regulatory sub-network in colorectal cancer |
title | Whole-transcriptome analysis reveals a potential hsa_circ_0001955/hsa_circ_0000977-mediated miRNA-mRNA regulatory sub-network in colorectal cancer |
title_full | Whole-transcriptome analysis reveals a potential hsa_circ_0001955/hsa_circ_0000977-mediated miRNA-mRNA regulatory sub-network in colorectal cancer |
title_fullStr | Whole-transcriptome analysis reveals a potential hsa_circ_0001955/hsa_circ_0000977-mediated miRNA-mRNA regulatory sub-network in colorectal cancer |
title_full_unstemmed | Whole-transcriptome analysis reveals a potential hsa_circ_0001955/hsa_circ_0000977-mediated miRNA-mRNA regulatory sub-network in colorectal cancer |
title_short | Whole-transcriptome analysis reveals a potential hsa_circ_0001955/hsa_circ_0000977-mediated miRNA-mRNA regulatory sub-network in colorectal cancer |
title_sort | whole-transcriptome analysis reveals a potential hsa_circ_0001955/hsa_circ_0000977-mediated mirna-mrna regulatory sub-network in colorectal cancer |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138558/ https://www.ncbi.nlm.nih.gov/pubmed/32221048 http://dx.doi.org/10.18632/aging.102945 |
work_keys_str_mv | AT dingbisha wholetranscriptomeanalysisrevealsapotentialhsacirc0001955hsacirc0000977mediatedmirnamrnaregulatorysubnetworkincolorectalcancer AT yaominya wholetranscriptomeanalysisrevealsapotentialhsacirc0001955hsacirc0000977mediatedmirnamrnaregulatorysubnetworkincolorectalcancer AT fanweimin wholetranscriptomeanalysisrevealsapotentialhsacirc0001955hsacirc0000977mediatedmirnamrnaregulatorysubnetworkincolorectalcancer AT louweiyang wholetranscriptomeanalysisrevealsapotentialhsacirc0001955hsacirc0000977mediatedmirnamrnaregulatorysubnetworkincolorectalcancer |