Cargando…

Overexpressed ITGA2 contributes to paclitaxel resistance by ovarian cancer cells through the activation of the AKT/FoxO1 pathway

Ovarian cancer is one of the most malignant tumors of the female reproductive system, with high invasiveness. The disease is a severe threat to women's health. The ITGA2 gene, which codes for integrin subunit α2, is involved in the proliferation, invasion, and metastasis of cancer cells. Althou...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Linlin, Sun, Yan, Li, Dan, Li, Hansong, Jin, Xin, Ren, Dianyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138566/
https://www.ncbi.nlm.nih.gov/pubmed/32202508
http://dx.doi.org/10.18632/aging.102954
Descripción
Sumario:Ovarian cancer is one of the most malignant tumors of the female reproductive system, with high invasiveness. The disease is a severe threat to women's health. The ITGA2 gene, which codes for integrin subunit α2, is involved in the proliferation, invasion, and metastasis of cancer cells. Although previous studies have shown that ITGA2 increases in ovarian cancer, the specific molecular mechanism of how ITGA2 promotes ovarian cancer proliferation and metastasis is still unclear. In this study, we confirmed that ITGA2 was elevated in ovarian cancer, which led to poor prognosis and survival. Overexpressed ITGA2 promoted the proliferation of ovarian cancer cells. We also found that ITGA2 regulated the phosphorylation of forkhead box O1 (FoxO1) by mediating AKT phosphorylation, which provided a reasonable explanation for ITGA2’s role in ovarian cancer’s resistance to albumin paclitaxel. In summary, ITGA2 could be used as a new therapeutic target and prognostic indicator in ovarian cancer.