Cargando…
Desflurane Preconditioning Protects Against Renal Ischemia–Reperfusion Injury and Inhibits Inflammation and Oxidative Stress in Rats Through Regulating the Nrf2-Keap1-ARE Signaling Pathway
OBJECTIVE: Kidney is sensitive to ischemia–reperfusion (I/R) injury because of its special structure and function. In this study, we aimed to explore the mechanism of desflurane (DFE) preconditioning effecting on renal I/R injury in rats. METHODS: Renal I/R injury rats model was constructed, and the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138619/ https://www.ncbi.nlm.nih.gov/pubmed/32308368 http://dx.doi.org/10.2147/DDDT.S223742 |
_version_ | 1783518607565651968 |
---|---|
author | Zheng, Yan Lu, Hui Huang, Huiqiong |
author_facet | Zheng, Yan Lu, Hui Huang, Huiqiong |
author_sort | Zheng, Yan |
collection | PubMed |
description | OBJECTIVE: Kidney is sensitive to ischemia–reperfusion (I/R) injury because of its special structure and function. In this study, we aimed to explore the mechanism of desflurane (DFE) preconditioning effecting on renal I/R injury in rats. METHODS: Renal I/R injury rats model was constructed, and the expressions of serum renal function parameters (blood urea nitrogen (BUN) and serum creatinine (SCr)) and lipid peroxidation-related factors were detected using corresponding commercial kits to assess the degrees of renal functional damage and oxidative stress. Hematoxylin–-eosin (HE) staining and Masson trichrome staining were applied to measure the renal histologic damage. The expressions of inflammation-related factors were determined by ELISA assay. The cell apoptosis was analyzed using TUNEL, Western blot and immunohistochemistry (IHC). IHC was also used to detect the number of myeloperoxidase (MPO)-positive cells. The expressions of proteins associated with the Nrf2-Keap1-ARE pathway were assessed by Western blot and IHC. RESULTS: DFE preconditioning inhibited I/R injury-induced BUN and SCr increase and renal histologic injury in rats. Also, DFE suppressed the inflammation, apoptosis and oxidative stress caused by renal I/R injury in vivo. In addition, DFE preconditioning repressed peroxide-related factors (MDA, MPO and NO) expressions and promoted antioxidant-related factors (GSH, SOD, GPx and CAT) expressions. In addition, DFE promoted Nrf2-Keap1-ARE-related proteins including Nrf2, NQO1, HO-1, γ-GCS, GSR and GCLc expressions. CONCLUSION: DFE preconditioning protected the kidney as well as inhibited the inflammation, cell apoptosis and oxidative stress in renal I/R injury rats by activating the Nrf2-Keap1-ARE signaling pathway. |
format | Online Article Text |
id | pubmed-7138619 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-71386192020-04-17 Desflurane Preconditioning Protects Against Renal Ischemia–Reperfusion Injury and Inhibits Inflammation and Oxidative Stress in Rats Through Regulating the Nrf2-Keap1-ARE Signaling Pathway Zheng, Yan Lu, Hui Huang, Huiqiong Drug Des Devel Ther Original Research OBJECTIVE: Kidney is sensitive to ischemia–reperfusion (I/R) injury because of its special structure and function. In this study, we aimed to explore the mechanism of desflurane (DFE) preconditioning effecting on renal I/R injury in rats. METHODS: Renal I/R injury rats model was constructed, and the expressions of serum renal function parameters (blood urea nitrogen (BUN) and serum creatinine (SCr)) and lipid peroxidation-related factors were detected using corresponding commercial kits to assess the degrees of renal functional damage and oxidative stress. Hematoxylin–-eosin (HE) staining and Masson trichrome staining were applied to measure the renal histologic damage. The expressions of inflammation-related factors were determined by ELISA assay. The cell apoptosis was analyzed using TUNEL, Western blot and immunohistochemistry (IHC). IHC was also used to detect the number of myeloperoxidase (MPO)-positive cells. The expressions of proteins associated with the Nrf2-Keap1-ARE pathway were assessed by Western blot and IHC. RESULTS: DFE preconditioning inhibited I/R injury-induced BUN and SCr increase and renal histologic injury in rats. Also, DFE suppressed the inflammation, apoptosis and oxidative stress caused by renal I/R injury in vivo. In addition, DFE preconditioning repressed peroxide-related factors (MDA, MPO and NO) expressions and promoted antioxidant-related factors (GSH, SOD, GPx and CAT) expressions. In addition, DFE promoted Nrf2-Keap1-ARE-related proteins including Nrf2, NQO1, HO-1, γ-GCS, GSR and GCLc expressions. CONCLUSION: DFE preconditioning protected the kidney as well as inhibited the inflammation, cell apoptosis and oxidative stress in renal I/R injury rats by activating the Nrf2-Keap1-ARE signaling pathway. Dove 2020-04-03 /pmc/articles/PMC7138619/ /pubmed/32308368 http://dx.doi.org/10.2147/DDDT.S223742 Text en © 2020 Zheng et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Zheng, Yan Lu, Hui Huang, Huiqiong Desflurane Preconditioning Protects Against Renal Ischemia–Reperfusion Injury and Inhibits Inflammation and Oxidative Stress in Rats Through Regulating the Nrf2-Keap1-ARE Signaling Pathway |
title | Desflurane Preconditioning Protects Against Renal Ischemia–Reperfusion Injury and Inhibits Inflammation and Oxidative Stress in Rats Through Regulating the Nrf2-Keap1-ARE Signaling Pathway |
title_full | Desflurane Preconditioning Protects Against Renal Ischemia–Reperfusion Injury and Inhibits Inflammation and Oxidative Stress in Rats Through Regulating the Nrf2-Keap1-ARE Signaling Pathway |
title_fullStr | Desflurane Preconditioning Protects Against Renal Ischemia–Reperfusion Injury and Inhibits Inflammation and Oxidative Stress in Rats Through Regulating the Nrf2-Keap1-ARE Signaling Pathway |
title_full_unstemmed | Desflurane Preconditioning Protects Against Renal Ischemia–Reperfusion Injury and Inhibits Inflammation and Oxidative Stress in Rats Through Regulating the Nrf2-Keap1-ARE Signaling Pathway |
title_short | Desflurane Preconditioning Protects Against Renal Ischemia–Reperfusion Injury and Inhibits Inflammation and Oxidative Stress in Rats Through Regulating the Nrf2-Keap1-ARE Signaling Pathway |
title_sort | desflurane preconditioning protects against renal ischemia–reperfusion injury and inhibits inflammation and oxidative stress in rats through regulating the nrf2-keap1-are signaling pathway |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138619/ https://www.ncbi.nlm.nih.gov/pubmed/32308368 http://dx.doi.org/10.2147/DDDT.S223742 |
work_keys_str_mv | AT zhengyan desfluranepreconditioningprotectsagainstrenalischemiareperfusioninjuryandinhibitsinflammationandoxidativestressinratsthroughregulatingthenrf2keap1aresignalingpathway AT luhui desfluranepreconditioningprotectsagainstrenalischemiareperfusioninjuryandinhibitsinflammationandoxidativestressinratsthroughregulatingthenrf2keap1aresignalingpathway AT huanghuiqiong desfluranepreconditioningprotectsagainstrenalischemiareperfusioninjuryandinhibitsinflammationandoxidativestressinratsthroughregulatingthenrf2keap1aresignalingpathway |