Cargando…
Apical but not sub-apical hyphal compartments are self-sustaining in growth
It was recently demonstrated that apical compartments of Aspergillus niger hyphae are self-sustaining in growth. This was shown by assessing the growth rate of individual hyphae before and after dissection of the second compartment. Using the same methodology, it is here demonstrated that single api...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138781/ https://www.ncbi.nlm.nih.gov/pubmed/31919791 http://dx.doi.org/10.1007/s10482-020-01383-9 |
Sumario: | It was recently demonstrated that apical compartments of Aspergillus niger hyphae are self-sustaining in growth. This was shown by assessing the growth rate of individual hyphae before and after dissection of the second compartment. Using the same methodology, it is here demonstrated that single apical compartments of the septate fungi Penicillium chrysogenum and Schizophyllum commune as well as the 500-µm-apical region of the non-septate fungus Rhizopus stolonifer are also self-sustaining in growth. In contrast, single 2nd compartments (obtained by dissection of the first and third compartment) of the septate fungi or the region between 500 and 1000 µm from tips of R. stolonifer were severely impacted in their growth rate. In addition, it is shown that existing or newly formed branches originating from the 2nd compartments function as a backup system for hyphal growth when the apical part of the hypha of the three studied fungi is damaged. Together, it is concluded that the apical compartments/zones of the studied fungi are self-sustaining in growth. In contrast, the subapical region is not self-sustaining but functions as a backup once the apical zone is damaged. This back up system is relevant in nature because the apices of hyphae are the first to be exposed to (a)biotic stress conditions when entering an unexplored substrate. |
---|