Cargando…
A Convex Variational Model for Learning Convolutional Image Atoms from Incomplete Data
A variational model for learning convolutional image atoms from corrupted and/or incomplete data is introduced and analyzed both in function space and numerically. Building on lifting and relaxation strategies, the proposed approach is convex and allows for simultaneous image reconstruction and atom...
Autores principales: | Chambolle, A., Holler, M., Pock, T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138786/ https://www.ncbi.nlm.nih.gov/pubmed/32300265 http://dx.doi.org/10.1007/s10851-019-00919-7 |
Ejemplares similares
-
Acceleration of the PDHGM on Partially Strongly Convex Functions
por: Valkonen, Tuomo, et al.
Publicado: (2016) -
Convex analysis and variational problems
por: Ereland, Ivar, et al.
Publicado: (1976) -
Variational calculus with elementary convexity
por: Troutman, John L
Publicado: (1983) -
Preface to “Optimization, Convex and Variational Analysis”
por: Aussel, Didier, et al.
Publicado: (2021) -
Fast dictionary learning from incomplete data
por: Naumova, Valeriya, et al.
Publicado: (2018)