Cargando…

A Microfluidic Platform to design Multimodal PEG - crosslinked Hyaluronic Acid Nanoparticles (PEG-cHANPs) for diagnostic applications

The combination of different imaging modalities can allow obtaining simultaneously morphological and functional information providing a more accurate diagnosis. This advancement can be reached through the use of multimodal tracers, and nanotechnology-based solutions allow the simultaneous delivery o...

Descripción completa

Detalles Bibliográficos
Autores principales: Tammaro, Olimpia, Costagliola di Polidoro, Angela, Romano, Eugenia, Netti, Paolo Antonio, Torino, Enza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138812/
https://www.ncbi.nlm.nih.gov/pubmed/32265496
http://dx.doi.org/10.1038/s41598-020-63234-x
Descripción
Sumario:The combination of different imaging modalities can allow obtaining simultaneously morphological and functional information providing a more accurate diagnosis. This advancement can be reached through the use of multimodal tracers, and nanotechnology-based solutions allow the simultaneous delivery of different diagnostic compounds moving a step towards their safe administration for multimodal imaging acquisition. Among different processes, nanoprecipitation is a consolidate method for the production of nanoparticles and its implementation in microfluidics can further improve the control over final product features accelerating its potential clinical translation. A Hydrodynamic Flow Focusing (HFF) approach is proposed to produce through a ONE-STEP process Multimodal Pegylated crosslinked Hyaluronic Acid NanoParticles (PEG-cHANPs). A monodisperse population of NPs with an average size of 140 nm is produced and Gd-DTPA and ATTO488 compounds are co-encapsulated, simultaneously. The results showed that the obtained multimodal nanoparticle could work as MRI/Optical imaging probe. Furthermore, under the Hydrodenticity effect, a boosting of the T1 values with respect to free Gd-DTPA is preserved.