Cargando…

In Vivo and In Vitro Anticancer Activity of Doxorubicin-loaded DNA-AuNP Nanocarrier for the Ovarian Cancer Treatment

In this study, we have determined the anticancer activity of doxorubicin (Dox)-loaded DNA/gold nanoparticle (AuNP) nanocarrier (Dox-DNA-AuNP) for the treatment of ovarian cancer. The anticancer effect of Dox-DNA-AuNP was evaluated in vitro using the EZ-Cytox cell viability assay on three human ovari...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Chang-Seuk, Kim, Tae Wan, Oh, Da Eun, Bae, Su Ok, Ryu, Jaesung, Kong, Hyejeong, Jeon, Hyeji, Seo, Hee Kyung, Jeon, Seob, Kim, Tae Hyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139456/
https://www.ncbi.nlm.nih.gov/pubmed/32182954
http://dx.doi.org/10.3390/cancers12030634
Descripción
Sumario:In this study, we have determined the anticancer activity of doxorubicin (Dox)-loaded DNA/gold nanoparticle (AuNP) nanocarrier (Dox-DNA-AuNP) for the treatment of ovarian cancer. The anticancer effect of Dox-DNA-AuNP was evaluated in vitro using the EZ-Cytox cell viability assay on three human ovarian cancer cell lines, SK-OV-3, HEY A8, and A2780. Dox-DNA-AuNP exhibited outstanding activity with good IC(50) values of 4.8, 7.4, and 7.6 nM for SK-OV-3, HEY A8, and A2780, respectively. In vivo evaluation further demonstrated the superior anticancer effects of Dox-DNA-AuNP by inhibiting tumor growth compared to free Dox in an established SK-OV-3 xenograft mice model. Dox-DNA-AuNP showed about a 2.5 times higher tumor growth inhibition rate than free Dox. Furthermore, the immunohistochemical analysis of Ki67 antigen expression showed the lowest number of proliferative cells in the ovarian tumor tissue treated with Dox-DNA-AuNP. These results suggest Dox-DNA-AuNP might be a potential effective agent in ovarian cancer chemotherapy.