Cargando…
Non-Photochemical Quenching Involved in the Regulation of Photosynthesis of Rice Leaves under High Nitrogen Conditions
Excess and deficient nitrogen (N) inhibit photosynthesis in the leaves of rice plants, but the underlying mechanism is still unclear. N can improve the chlorophyll content and thus affect photon absorption, but the photosynthetic rate does not increase accordingly. To investigate this mechanism, thr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139968/ https://www.ncbi.nlm.nih.gov/pubmed/32204443 http://dx.doi.org/10.3390/ijms21062115 |
_version_ | 1783518888483356672 |
---|---|
author | Cisse, Amara Zhao, Xia Fu, Weimeng Kim, Romesh Eric Romy Chen, Tingting Tao, Longxing Feng, Baohua |
author_facet | Cisse, Amara Zhao, Xia Fu, Weimeng Kim, Romesh Eric Romy Chen, Tingting Tao, Longxing Feng, Baohua |
author_sort | Cisse, Amara |
collection | PubMed |
description | Excess and deficient nitrogen (N) inhibit photosynthesis in the leaves of rice plants, but the underlying mechanism is still unclear. N can improve the chlorophyll content and thus affect photon absorption, but the photosynthetic rate does not increase accordingly. To investigate this mechanism, three concentrations of N treatments were applied to two rice varieties, Zhefu802 and Fgl. The results indicated increased chlorophyll content of leaves with an increased N supply. Little discrepancy was detected in Rubisco enzyme activity and Non-photochemical quenching (NPQ) in the high nitrogen (HN) and moderate nitrogen (MN) treatments. The model that photoinhibition occurs in Zhefu802 due to a lack of balance of light absorption and utilization is supported by the higher malondialdehyde (MDA) content, higher H(2)O(2) content, and photoinhibitory quenching (qI) in HN treatment compared with MN treatment. A lower proportion of N in leaf was used to synthesize chlorophyll for Fgl compared with Zhefu802, reducing the likelihood of photoinhibition under HN treatment. In conclusion, HN supply does not allow ideal photosynthetic rate and increases the likelihood of photoinhibition because it does not sustain the balance of light absorption and utilization. Apart from Rubisco enzyme activity, NPQ mainly contributes to the unbalance. These results of this study will provide reference for the effective N management of rice. |
format | Online Article Text |
id | pubmed-7139968 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71399682020-04-13 Non-Photochemical Quenching Involved in the Regulation of Photosynthesis of Rice Leaves under High Nitrogen Conditions Cisse, Amara Zhao, Xia Fu, Weimeng Kim, Romesh Eric Romy Chen, Tingting Tao, Longxing Feng, Baohua Int J Mol Sci Article Excess and deficient nitrogen (N) inhibit photosynthesis in the leaves of rice plants, but the underlying mechanism is still unclear. N can improve the chlorophyll content and thus affect photon absorption, but the photosynthetic rate does not increase accordingly. To investigate this mechanism, three concentrations of N treatments were applied to two rice varieties, Zhefu802 and Fgl. The results indicated increased chlorophyll content of leaves with an increased N supply. Little discrepancy was detected in Rubisco enzyme activity and Non-photochemical quenching (NPQ) in the high nitrogen (HN) and moderate nitrogen (MN) treatments. The model that photoinhibition occurs in Zhefu802 due to a lack of balance of light absorption and utilization is supported by the higher malondialdehyde (MDA) content, higher H(2)O(2) content, and photoinhibitory quenching (qI) in HN treatment compared with MN treatment. A lower proportion of N in leaf was used to synthesize chlorophyll for Fgl compared with Zhefu802, reducing the likelihood of photoinhibition under HN treatment. In conclusion, HN supply does not allow ideal photosynthetic rate and increases the likelihood of photoinhibition because it does not sustain the balance of light absorption and utilization. Apart from Rubisco enzyme activity, NPQ mainly contributes to the unbalance. These results of this study will provide reference for the effective N management of rice. MDPI 2020-03-19 /pmc/articles/PMC7139968/ /pubmed/32204443 http://dx.doi.org/10.3390/ijms21062115 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cisse, Amara Zhao, Xia Fu, Weimeng Kim, Romesh Eric Romy Chen, Tingting Tao, Longxing Feng, Baohua Non-Photochemical Quenching Involved in the Regulation of Photosynthesis of Rice Leaves under High Nitrogen Conditions |
title | Non-Photochemical Quenching Involved in the Regulation of Photosynthesis of Rice Leaves under High Nitrogen Conditions |
title_full | Non-Photochemical Quenching Involved in the Regulation of Photosynthesis of Rice Leaves under High Nitrogen Conditions |
title_fullStr | Non-Photochemical Quenching Involved in the Regulation of Photosynthesis of Rice Leaves under High Nitrogen Conditions |
title_full_unstemmed | Non-Photochemical Quenching Involved in the Regulation of Photosynthesis of Rice Leaves under High Nitrogen Conditions |
title_short | Non-Photochemical Quenching Involved in the Regulation of Photosynthesis of Rice Leaves under High Nitrogen Conditions |
title_sort | non-photochemical quenching involved in the regulation of photosynthesis of rice leaves under high nitrogen conditions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139968/ https://www.ncbi.nlm.nih.gov/pubmed/32204443 http://dx.doi.org/10.3390/ijms21062115 |
work_keys_str_mv | AT cisseamara nonphotochemicalquenchinginvolvedintheregulationofphotosynthesisofriceleavesunderhighnitrogenconditions AT zhaoxia nonphotochemicalquenchinginvolvedintheregulationofphotosynthesisofriceleavesunderhighnitrogenconditions AT fuweimeng nonphotochemicalquenchinginvolvedintheregulationofphotosynthesisofriceleavesunderhighnitrogenconditions AT kimromeshericromy nonphotochemicalquenchinginvolvedintheregulationofphotosynthesisofriceleavesunderhighnitrogenconditions AT chentingting nonphotochemicalquenchinginvolvedintheregulationofphotosynthesisofriceleavesunderhighnitrogenconditions AT taolongxing nonphotochemicalquenchinginvolvedintheregulationofphotosynthesisofriceleavesunderhighnitrogenconditions AT fengbaohua nonphotochemicalquenchinginvolvedintheregulationofphotosynthesisofriceleavesunderhighnitrogenconditions |