Cargando…

Detection of Glioblastoma Subclinical Recurrence Using Serial Diffusion Tensor Imaging

Glioblastoma is an aggressive brain tumor with a propensity for intracranial recurrence. We hypothesized that tumors can be visualized with diffusion tensor imaging (DTI) before they are detected on anatomical magnetic resonance (MR) images. We retrospectively analyzed serial MR images from 30 patie...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Yan, Randall, James W., Elhalawani, Hesham, Al Feghali, Karine A., Elliott, Andrew M., Anderson, Brian M., Lacerda, Lara, Tran, Benjamin L., Mohamed, Abdallah S., Brock, Kristy K., Fuller, Clifton D., Chung, Caroline
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139975/
https://www.ncbi.nlm.nih.gov/pubmed/32121471
http://dx.doi.org/10.3390/cancers12030568
_version_ 1783518890146398208
author Jin, Yan
Randall, James W.
Elhalawani, Hesham
Al Feghali, Karine A.
Elliott, Andrew M.
Anderson, Brian M.
Lacerda, Lara
Tran, Benjamin L.
Mohamed, Abdallah S.
Brock, Kristy K.
Fuller, Clifton D.
Chung, Caroline
author_facet Jin, Yan
Randall, James W.
Elhalawani, Hesham
Al Feghali, Karine A.
Elliott, Andrew M.
Anderson, Brian M.
Lacerda, Lara
Tran, Benjamin L.
Mohamed, Abdallah S.
Brock, Kristy K.
Fuller, Clifton D.
Chung, Caroline
author_sort Jin, Yan
collection PubMed
description Glioblastoma is an aggressive brain tumor with a propensity for intracranial recurrence. We hypothesized that tumors can be visualized with diffusion tensor imaging (DTI) before they are detected on anatomical magnetic resonance (MR) images. We retrospectively analyzed serial MR images from 30 patients, including the DTI and T1-weighted images at recurrence, at 2 months and 4 months before recurrence, and at 1 month after radiation therapy. The diffusion maps and T1 images were deformably registered longitudinally. The recurrent tumor was manually segmented on the T1-weighted image and then applied to the diffusion maps at each time point to collect mean FA, diffusivities, and neurite density index (NDI) values, respectively. Group analysis of variance showed significant changes in FA (p = 0.01) and NDI (p = 0.0015) over time. Pairwise t tests also revealed that FA and NDI at 2 months before recurrence were 11.2% and 6.4% lower than those at 1 month after radiation therapy (p < 0.05), respectively. Changes in FA and NDI were observed 2 months before recurrence, suggesting that progressive microstructural changes and neurite density loss may be detectable before tumor detection in anatomical MR images. FA and NDI may serve as non-contrast MR-based biomarkers for detecting subclinical tumors.
format Online
Article
Text
id pubmed-7139975
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-71399752020-04-13 Detection of Glioblastoma Subclinical Recurrence Using Serial Diffusion Tensor Imaging Jin, Yan Randall, James W. Elhalawani, Hesham Al Feghali, Karine A. Elliott, Andrew M. Anderson, Brian M. Lacerda, Lara Tran, Benjamin L. Mohamed, Abdallah S. Brock, Kristy K. Fuller, Clifton D. Chung, Caroline Cancers (Basel) Article Glioblastoma is an aggressive brain tumor with a propensity for intracranial recurrence. We hypothesized that tumors can be visualized with diffusion tensor imaging (DTI) before they are detected on anatomical magnetic resonance (MR) images. We retrospectively analyzed serial MR images from 30 patients, including the DTI and T1-weighted images at recurrence, at 2 months and 4 months before recurrence, and at 1 month after radiation therapy. The diffusion maps and T1 images were deformably registered longitudinally. The recurrent tumor was manually segmented on the T1-weighted image and then applied to the diffusion maps at each time point to collect mean FA, diffusivities, and neurite density index (NDI) values, respectively. Group analysis of variance showed significant changes in FA (p = 0.01) and NDI (p = 0.0015) over time. Pairwise t tests also revealed that FA and NDI at 2 months before recurrence were 11.2% and 6.4% lower than those at 1 month after radiation therapy (p < 0.05), respectively. Changes in FA and NDI were observed 2 months before recurrence, suggesting that progressive microstructural changes and neurite density loss may be detectable before tumor detection in anatomical MR images. FA and NDI may serve as non-contrast MR-based biomarkers for detecting subclinical tumors. MDPI 2020-02-29 /pmc/articles/PMC7139975/ /pubmed/32121471 http://dx.doi.org/10.3390/cancers12030568 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jin, Yan
Randall, James W.
Elhalawani, Hesham
Al Feghali, Karine A.
Elliott, Andrew M.
Anderson, Brian M.
Lacerda, Lara
Tran, Benjamin L.
Mohamed, Abdallah S.
Brock, Kristy K.
Fuller, Clifton D.
Chung, Caroline
Detection of Glioblastoma Subclinical Recurrence Using Serial Diffusion Tensor Imaging
title Detection of Glioblastoma Subclinical Recurrence Using Serial Diffusion Tensor Imaging
title_full Detection of Glioblastoma Subclinical Recurrence Using Serial Diffusion Tensor Imaging
title_fullStr Detection of Glioblastoma Subclinical Recurrence Using Serial Diffusion Tensor Imaging
title_full_unstemmed Detection of Glioblastoma Subclinical Recurrence Using Serial Diffusion Tensor Imaging
title_short Detection of Glioblastoma Subclinical Recurrence Using Serial Diffusion Tensor Imaging
title_sort detection of glioblastoma subclinical recurrence using serial diffusion tensor imaging
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139975/
https://www.ncbi.nlm.nih.gov/pubmed/32121471
http://dx.doi.org/10.3390/cancers12030568
work_keys_str_mv AT jinyan detectionofglioblastomasubclinicalrecurrenceusingserialdiffusiontensorimaging
AT randalljamesw detectionofglioblastomasubclinicalrecurrenceusingserialdiffusiontensorimaging
AT elhalawanihesham detectionofglioblastomasubclinicalrecurrenceusingserialdiffusiontensorimaging
AT alfeghalikarinea detectionofglioblastomasubclinicalrecurrenceusingserialdiffusiontensorimaging
AT elliottandrewm detectionofglioblastomasubclinicalrecurrenceusingserialdiffusiontensorimaging
AT andersonbrianm detectionofglioblastomasubclinicalrecurrenceusingserialdiffusiontensorimaging
AT lacerdalara detectionofglioblastomasubclinicalrecurrenceusingserialdiffusiontensorimaging
AT tranbenjaminl detectionofglioblastomasubclinicalrecurrenceusingserialdiffusiontensorimaging
AT mohamedabdallahs detectionofglioblastomasubclinicalrecurrenceusingserialdiffusiontensorimaging
AT brockkristyk detectionofglioblastomasubclinicalrecurrenceusingserialdiffusiontensorimaging
AT fullercliftond detectionofglioblastomasubclinicalrecurrenceusingserialdiffusiontensorimaging
AT chungcaroline detectionofglioblastomasubclinicalrecurrenceusingserialdiffusiontensorimaging