Cargando…
Identification of Candidate Genes Involved in Curd Riceyness in Cauliflower
“Riceyness” refers to the precocious development of flower bud initials over the curd surface of cauliflower, and it is regarded as undesirable for the market. The present study aimed to identify the candidate loci and genes responsible for the morphological difference in riceyness between a pair of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139996/ https://www.ncbi.nlm.nih.gov/pubmed/32183438 http://dx.doi.org/10.3390/ijms21061999 |
Sumario: | “Riceyness” refers to the precocious development of flower bud initials over the curd surface of cauliflower, and it is regarded as undesirable for the market. The present study aimed to identify the candidate loci and genes responsible for the morphological difference in riceyness between a pair of cauliflower sister lines. Genetic analysis revealed that riceyness is controlled by a single dominant locus. An F(2) population derived from the cross between these sister lines was used to construct “riceyness” and “non-riceyness” bulks, and then it was subjected to BSA-seq. On the basis of the results of Δ(SNP-index) analysis, a 4.0 Mb candidate region including 22 putative SNPs was mapped on chromosome C04. Combining the RNA-seq, gene function annotation, and target sequence analysis among two parents and other breeding lines, an orthologous gene of the Arabidopsis gene SOC1, Bo4g024850 was presumed as the candidate gene, and an upstream SNP likely resulted in riceyness phenotype via influencing the expression levels of Bo4g024850. These results are helpful to understand the genetic mechanism regulating riceyness, and to facilitate the molecular improvement on cauliflower curds. |
---|