Cargando…
Development and characterization of 16 novel microsatellite markers by Transcriptome sequencing for Angelica dahurica and test for cross-species amplification
BACKGROUND: Angelica dahurica (Apiaceae) is an important herb in traditional Chinese medicine. Because of its important medicinal and economic values, its wild resources were over-exploited and increasingly reduced. Meanwhile, the diversity of cultivars of A. dahurica has decreased as a result of lo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140362/ https://www.ncbi.nlm.nih.gov/pubmed/32268882 http://dx.doi.org/10.1186/s12870-020-02374-8 |
Sumario: | BACKGROUND: Angelica dahurica (Apiaceae) is an important herb in traditional Chinese medicine. Because of its important medicinal and economic values, its wild resources were over-exploited and increasingly reduced. Meanwhile, the diversity of cultivars of A. dahurica has decreased as a result of long-term artificial cultivation. However, there are no population genetics studies of natural A. dahurica reported yet, especially for using microsatellite markers (SSRs) to investigate population genetics of the species. RESULTS: Sixteen polymorphic EST-SSR loci were isolated from A. dahurica with transcriptome sequencing technology (RNA-Seq). The number of alleles varied from 2 to 15 per polymorphic locus over populations with the observed and expected heterozygosities ranging from 0.000 to 1.000 and from 0.000 to 0.829, respectively. Significant deviations from Hardy–Weinberg equilibrium were observed at 8 loci. Tests of linkage disequilibrium showed 11 informative locus pairs were significant across all populations. Cross-species amplification showed that 14 out of 16 SSR loci have the transferability in cultivar-A. dahurica cv. ‘Hangbaizhi’ and A. decursiva. CONCLUSIONS: The 16 newly developed loci microsatellite primers with RNA-Seq will be useful for further investigating population genetics of A. dahurica, cultivars and other members of this genus. |
---|