Cargando…
Minimum 8-year follow-up of revision THA with severe femoral bone defects using extensively porous-coated stems and cortical strut allografts
BACKGROUND: Revision total hip arthroplasty (THA) with severe femoral bone defects remains a major challenge. The purpose of this study is to report the minimum 8-year clinical and radiographic results of revision THA with severe femoral bone defects treated with extensively porous-coated stems and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140549/ https://www.ncbi.nlm.nih.gov/pubmed/32268894 http://dx.doi.org/10.1186/s12891-020-03250-0 |
Sumario: | BACKGROUND: Revision total hip arthroplasty (THA) with severe femoral bone defects remains a major challenge. The purpose of this study is to report the minimum 8-year clinical and radiographic results of revision THA with severe femoral bone defects treated with extensively porous-coated stems and cortical strut allografts. METHODS: We retrospectively identified 44 patients diagnosed with Paprosky type III and IV femoral bone defects between January 2006 and July 2011. The exclusion criteria were patients not eligible for surgery, revised with extensively porous-coated stems alone, lost to follow-up and deceased. A total of 31 patients treated with extensively porous-coated stems and cortical strut allografts were finally included in this study. The degree of femoral bone defects was categorized as Paprosky type IIIA in 19 patients, type IIIB in 9 patients and type IV in 3 patients. The mean duration of follow-up was 11.0 ± 1.5 (range, 8.1–13.5) years. RESULTS: The mean Harris Hip Score improved significantly from 43.4 ± 10.5 points to 85.2 ± 6.6 points (P < 0.001). Similarly, WOMAC and SF-12 scores also significantly improved. Twenty-eight stems achieved stable bone ingrowth, two stems showed stable fibrous ingrowth, and one stem was radiologically unstable. Complete union and bridging between cortical strut allografts and host bone was achieved in all 31 patients. The femoral width was augmented with cortical strut allografts after revision surgery (an increase of 10.5 ± 0.5 mm) and showed a slight decrease of 2.5 ± 4.8 mm after the 10-year follow-up. Using re-revision for any reason as an endpoint, the Kaplan-Meier cumulative survival rate of the stem was 96.2% (95% confidence interval, 75.7–99.5%) at 10 years. CONCLUSION: Our data demonstrate that the use of extensively porous-coated stems combined with cortical strut allografts in revision THA with Paprosky type III and IV femoral bone defects can provide satisfactory clinical and radiographic outcomes with a minimum follow-up of 8 years. |
---|