Cargando…
Three critical factors affecting automated image species recognition performance for camera traps
Ecological camera traps are increasingly used by wildlife biologists to unobtrusively monitor an ecosystems animal population. However, manual inspection of the images produced is expensive, laborious, and time‐consuming. The success of deep learning systems using camera trap images has been previou...
Autores principales: | Schneider, Stefan, Greenberg, Saul, Taylor, Graham W., Kremer, Stefan C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141055/ https://www.ncbi.nlm.nih.gov/pubmed/32274005 http://dx.doi.org/10.1002/ece3.6147 |
Ejemplares similares
-
Design patterns for wildlife‐related camera trap image analysis
por: Greenberg, Saul, et al.
Publicado: (2019) -
Animal Species Recognition with Deep Convolutional Neural Networks from Ecological Camera Trap Images
por: Binta Islam, Sazida, et al.
Publicado: (2023) -
Automated Detection and Recognition of Wildlife Using Thermal Cameras
por: Christiansen, Peter, et al.
Publicado: (2014) -
Camera trap placement for evaluating species richness, abundance, and activity
por: Tanwar, Kamakshi S., et al.
Publicado: (2021) -
Simulation-based assessment of the performance of hierarchical abundance estimators for camera trap surveys of unmarked species
por: Martijn, Bollen, et al.
Publicado: (2023)