Cargando…
Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571
Azorhizobium caulinodans is a symbiotic nitrogen-fixing bacterium that forms both root and stem nodules on Sesbania rostrata. During nodule formation, bacteria have to withstand organic peroxides that are produced by plant. Previous studies have elaborated on resistance to these oxygen radicals in s...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141136/ https://www.ncbi.nlm.nih.gov/pubmed/32245101 http://dx.doi.org/10.3390/genes11030335 |
_version_ | 1783519132071755776 |
---|---|
author | Si, Yang Guo, Dongsen Deng, Shuoxue Lu, Xiuming Zhu, Juanjuan Rao, Bei Cao, Yajun Jiang, Gaofei Yu, Daogeng Zhong, Zengtao Zhu, Jun |
author_facet | Si, Yang Guo, Dongsen Deng, Shuoxue Lu, Xiuming Zhu, Juanjuan Rao, Bei Cao, Yajun Jiang, Gaofei Yu, Daogeng Zhong, Zengtao Zhu, Jun |
author_sort | Si, Yang |
collection | PubMed |
description | Azorhizobium caulinodans is a symbiotic nitrogen-fixing bacterium that forms both root and stem nodules on Sesbania rostrata. During nodule formation, bacteria have to withstand organic peroxides that are produced by plant. Previous studies have elaborated on resistance to these oxygen radicals in several bacteria; however, to the best of our knowledge, none have investigated this process in A. caulinodans. In this study, we identified and characterised the organic hydroperoxide resistance gene ohr (AZC_2977) and its regulator ohrR (AZC_3555) in A. caulinodans ORS571. Hypersensitivity to organic hydroperoxide was observed in an ohr mutant. While using a lacZ-based reporter system, we revealed that OhrR repressed the expression of ohr. Moreover, electrophoretic mobility shift assays demonstrated that OhrR regulated ohr by direct binding to its promoter region. We showed that this binding was prevented by OhrR oxidation under aerobic conditions, which promoted OhrR dimerization and the activation of ohr. Furthermore, we showed that one of the two conserved cysteine residues in OhrR, Cys(11), was critical for the sensitivity to organic hydroperoxides. Plant assays revealed that the inactivation of Ohr decreased the number of stem nodules and nitrogenase activity. Our data demonstrated that Ohr and OhrR are required for protecting A. caulinodans from organic hydroperoxide stress and play an important role in the interaction of the bacterium with plants. The results that were obtained in our study suggested that a thiol-based switch in A. caulinodans might sense host organic peroxide signals and enhance symbiosis. |
format | Online Article Text |
id | pubmed-7141136 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71411362020-04-10 Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571 Si, Yang Guo, Dongsen Deng, Shuoxue Lu, Xiuming Zhu, Juanjuan Rao, Bei Cao, Yajun Jiang, Gaofei Yu, Daogeng Zhong, Zengtao Zhu, Jun Genes (Basel) Article Azorhizobium caulinodans is a symbiotic nitrogen-fixing bacterium that forms both root and stem nodules on Sesbania rostrata. During nodule formation, bacteria have to withstand organic peroxides that are produced by plant. Previous studies have elaborated on resistance to these oxygen radicals in several bacteria; however, to the best of our knowledge, none have investigated this process in A. caulinodans. In this study, we identified and characterised the organic hydroperoxide resistance gene ohr (AZC_2977) and its regulator ohrR (AZC_3555) in A. caulinodans ORS571. Hypersensitivity to organic hydroperoxide was observed in an ohr mutant. While using a lacZ-based reporter system, we revealed that OhrR repressed the expression of ohr. Moreover, electrophoretic mobility shift assays demonstrated that OhrR regulated ohr by direct binding to its promoter region. We showed that this binding was prevented by OhrR oxidation under aerobic conditions, which promoted OhrR dimerization and the activation of ohr. Furthermore, we showed that one of the two conserved cysteine residues in OhrR, Cys(11), was critical for the sensitivity to organic hydroperoxides. Plant assays revealed that the inactivation of Ohr decreased the number of stem nodules and nitrogenase activity. Our data demonstrated that Ohr and OhrR are required for protecting A. caulinodans from organic hydroperoxide stress and play an important role in the interaction of the bacterium with plants. The results that were obtained in our study suggested that a thiol-based switch in A. caulinodans might sense host organic peroxide signals and enhance symbiosis. MDPI 2020-03-20 /pmc/articles/PMC7141136/ /pubmed/32245101 http://dx.doi.org/10.3390/genes11030335 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Si, Yang Guo, Dongsen Deng, Shuoxue Lu, Xiuming Zhu, Juanjuan Rao, Bei Cao, Yajun Jiang, Gaofei Yu, Daogeng Zhong, Zengtao Zhu, Jun Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571 |
title | Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571 |
title_full | Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571 |
title_fullStr | Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571 |
title_full_unstemmed | Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571 |
title_short | Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571 |
title_sort | ohr and ohrr are critical for organic peroxide resistance and symbiosis in azorhizobium caulinodans ors571 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141136/ https://www.ncbi.nlm.nih.gov/pubmed/32245101 http://dx.doi.org/10.3390/genes11030335 |
work_keys_str_mv | AT siyang ohrandohrrarecriticalfororganicperoxideresistanceandsymbiosisinazorhizobiumcaulinodansors571 AT guodongsen ohrandohrrarecriticalfororganicperoxideresistanceandsymbiosisinazorhizobiumcaulinodansors571 AT dengshuoxue ohrandohrrarecriticalfororganicperoxideresistanceandsymbiosisinazorhizobiumcaulinodansors571 AT luxiuming ohrandohrrarecriticalfororganicperoxideresistanceandsymbiosisinazorhizobiumcaulinodansors571 AT zhujuanjuan ohrandohrrarecriticalfororganicperoxideresistanceandsymbiosisinazorhizobiumcaulinodansors571 AT raobei ohrandohrrarecriticalfororganicperoxideresistanceandsymbiosisinazorhizobiumcaulinodansors571 AT caoyajun ohrandohrrarecriticalfororganicperoxideresistanceandsymbiosisinazorhizobiumcaulinodansors571 AT jianggaofei ohrandohrrarecriticalfororganicperoxideresistanceandsymbiosisinazorhizobiumcaulinodansors571 AT yudaogeng ohrandohrrarecriticalfororganicperoxideresistanceandsymbiosisinazorhizobiumcaulinodansors571 AT zhongzengtao ohrandohrrarecriticalfororganicperoxideresistanceandsymbiosisinazorhizobiumcaulinodansors571 AT zhujun ohrandohrrarecriticalfororganicperoxideresistanceandsymbiosisinazorhizobiumcaulinodansors571 |