Cargando…
An Autoencoder and Machine Learning Model to Predict Suicidal Ideation with Brain Structural Imaging
It is estimated that at least one million people die by suicide every year, showing the importance of suicide prevention and detection. In this study, an autoencoder and machine learning model was employed to predict people with suicidal ideation based on their structural brain imaging. The subjects...
Autores principales: | Weng, Jun-Cheng, Lin, Tung-Yeh, Tsai, Yuan-Hsiung, Cheok, Man Teng, Chang, Yi-Peng Eve, Chen, Vincent Chin-Hung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141277/ https://www.ncbi.nlm.nih.gov/pubmed/32121362 http://dx.doi.org/10.3390/jcm9030658 |
Ejemplares similares
-
Assessment of Disrupted Brain Structural Connectome in Depressive Patients With Suicidal Ideation Using Generalized Q-Sampling MRI
por: Chen, Vincent Chin-Hung, et al.
Publicado: (2021) -
Detection of Suicide Attempters among Suicide Ideators Using Machine Learning
por: Ryu, Seunghyong, et al.
Publicado: (2019) -
Machine learning discovery of longitudinal patterns of depression and suicidal ideation
por: Gong, Jue, et al.
Publicado: (2019) -
Suicidal Ideation and Attempts in Trichotillomania
por: Grant, Jon E., et al.
Publicado: (2023) -
A Machine Learning Approach for Predicting Wage Workers’ Suicidal Ideation
por: Park, Hwanjin, et al.
Publicado: (2022)