Cargando…
The use of missing values in proteomic data-independent acquisition mass spectrometry to enable disease activity discrimination
MOTIVATION: Data-independent acquisition mass spectrometry allows for comprehensive peptide detection and relative quantification than standard data-dependent approaches. While less prone to missing values, these still exist. Current approaches for handling the so-called missingness have challenges....
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141869/ https://www.ncbi.nlm.nih.gov/pubmed/31790148 http://dx.doi.org/10.1093/bioinformatics/btz898 |
_version_ | 1783519274062577664 |
---|---|
author | McGurk, Kathryn A Dagliati, Arianna Chiasserini, Davide Lee, Dave Plant, Darren Baricevic-Jones, Ivona Kelsall, Janet Eineman, Rachael Reed, Rachel Geary, Bethany Unwin, Richard D Nicolaou, Anna Keavney, Bernard D Barton, Anne Whetton, Anthony D Geifman, Nophar |
author_facet | McGurk, Kathryn A Dagliati, Arianna Chiasserini, Davide Lee, Dave Plant, Darren Baricevic-Jones, Ivona Kelsall, Janet Eineman, Rachael Reed, Rachel Geary, Bethany Unwin, Richard D Nicolaou, Anna Keavney, Bernard D Barton, Anne Whetton, Anthony D Geifman, Nophar |
author_sort | McGurk, Kathryn A |
collection | PubMed |
description | MOTIVATION: Data-independent acquisition mass spectrometry allows for comprehensive peptide detection and relative quantification than standard data-dependent approaches. While less prone to missing values, these still exist. Current approaches for handling the so-called missingness have challenges. We hypothesized that non-random missingness is a useful biological measure and demonstrate the importance of analysing missingness for proteomic discovery within a longitudinal study of disease activity. RESULTS: The magnitude of missingness did not correlate with mean peptide concentration. The magnitude of missingness for each protein strongly correlated between collection time points (baseline, 3 months, 6 months; R = 0.95–0.97, confidence interval = 0.94–0.97) indicating little time-dependent effect. This allowed for the identification of proteins with outlier levels of missingness that differentiate between the patient groups characterized by different patterns of disease activity. The association of these proteins with disease activity was confirmed by machine learning techniques. Our novel approach complements analyses on complete observations and other missing value strategies in biomarker prediction of disease activity. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-7141869 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-71418692020-04-13 The use of missing values in proteomic data-independent acquisition mass spectrometry to enable disease activity discrimination McGurk, Kathryn A Dagliati, Arianna Chiasserini, Davide Lee, Dave Plant, Darren Baricevic-Jones, Ivona Kelsall, Janet Eineman, Rachael Reed, Rachel Geary, Bethany Unwin, Richard D Nicolaou, Anna Keavney, Bernard D Barton, Anne Whetton, Anthony D Geifman, Nophar Bioinformatics Original Papers MOTIVATION: Data-independent acquisition mass spectrometry allows for comprehensive peptide detection and relative quantification than standard data-dependent approaches. While less prone to missing values, these still exist. Current approaches for handling the so-called missingness have challenges. We hypothesized that non-random missingness is a useful biological measure and demonstrate the importance of analysing missingness for proteomic discovery within a longitudinal study of disease activity. RESULTS: The magnitude of missingness did not correlate with mean peptide concentration. The magnitude of missingness for each protein strongly correlated between collection time points (baseline, 3 months, 6 months; R = 0.95–0.97, confidence interval = 0.94–0.97) indicating little time-dependent effect. This allowed for the identification of proteins with outlier levels of missingness that differentiate between the patient groups characterized by different patterns of disease activity. The association of these proteins with disease activity was confirmed by machine learning techniques. Our novel approach complements analyses on complete observations and other missing value strategies in biomarker prediction of disease activity. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2020-04-01 2019-12-02 /pmc/articles/PMC7141869/ /pubmed/31790148 http://dx.doi.org/10.1093/bioinformatics/btz898 Text en © The Author(s) 2019. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers McGurk, Kathryn A Dagliati, Arianna Chiasserini, Davide Lee, Dave Plant, Darren Baricevic-Jones, Ivona Kelsall, Janet Eineman, Rachael Reed, Rachel Geary, Bethany Unwin, Richard D Nicolaou, Anna Keavney, Bernard D Barton, Anne Whetton, Anthony D Geifman, Nophar The use of missing values in proteomic data-independent acquisition mass spectrometry to enable disease activity discrimination |
title | The use of missing values in proteomic data-independent acquisition mass spectrometry to enable disease activity discrimination |
title_full | The use of missing values in proteomic data-independent acquisition mass spectrometry to enable disease activity discrimination |
title_fullStr | The use of missing values in proteomic data-independent acquisition mass spectrometry to enable disease activity discrimination |
title_full_unstemmed | The use of missing values in proteomic data-independent acquisition mass spectrometry to enable disease activity discrimination |
title_short | The use of missing values in proteomic data-independent acquisition mass spectrometry to enable disease activity discrimination |
title_sort | use of missing values in proteomic data-independent acquisition mass spectrometry to enable disease activity discrimination |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141869/ https://www.ncbi.nlm.nih.gov/pubmed/31790148 http://dx.doi.org/10.1093/bioinformatics/btz898 |
work_keys_str_mv | AT mcgurkkathryna theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT dagliatiarianna theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT chiasserinidavide theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT leedave theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT plantdarren theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT baricevicjonesivona theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT kelsalljanet theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT einemanrachael theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT reedrachel theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT gearybethany theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT unwinrichardd theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT nicolaouanna theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT keavneybernardd theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT bartonanne theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT whettonanthonyd theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT geifmannophar theuseofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT mcgurkkathryna useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT dagliatiarianna useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT chiasserinidavide useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT leedave useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT plantdarren useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT baricevicjonesivona useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT kelsalljanet useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT einemanrachael useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT reedrachel useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT gearybethany useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT unwinrichardd useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT nicolaouanna useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT keavneybernardd useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT bartonanne useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT whettonanthonyd useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination AT geifmannophar useofmissingvaluesinproteomicdataindependentacquisitionmassspectrometrytoenablediseaseactivitydiscrimination |