Cargando…
Antibody complementarity determining region design using high-capacity machine learning
MOTIVATION: The precise targeting of antibodies and other protein therapeutics is required for their proper function and the elimination of deleterious off-target effects. Often the molecular structure of a therapeutic target is unknown and randomized methods are used to design antibodies without a...
Autores principales: | Liu, Ge, Zeng, Haoyang, Mueller, Jonas, Carter, Brandon, Wang, Ziheng, Schilz, Jonas, Horny, Geraldine, Birnbaum, Michael E, Ewert, Stefan, Gifford, David K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141872/ https://www.ncbi.nlm.nih.gov/pubmed/31778140 http://dx.doi.org/10.1093/bioinformatics/btz895 |
Ejemplares similares
-
Machine learning optimization of peptides for presentation by class II MHCs
por: Dai, Zheng, et al.
Publicado: (2021) -
Computational counterselection identifies nonspecific therapeutic biologic candidates
por: Saksena, Sachit Dinesh, et al.
Publicado: (2022) -
Antibody homotypic interactions are encoded by germline light chain complementarity determining region 2
por: Leonard, Brandon, et al.
Publicado: (2022) -
Oxidation in the complementarity-determining regions differentially influences the properties of therapeutic antibodies
por: Dashivets, Tetyana, et al.
Publicado: (2016) -
Improving antibody affinity through in vitro mutagenesis in complementarity determining regions
por: Ye, Wei, et al.
Publicado: (2022)