Cargando…
Generative and discriminative model-based approaches to microscopic image restoration and segmentation
Image processing is one of the most important applications of recent machine learning (ML) technologies. Convolutional neural networks (CNNs), a popular deep learning-based ML architecture, have been developed for image processing applications. However, the application of ML to microscopic images is...
Autores principales: | Ishii, Shin, Lee, Sehyung, Urakubo, Hidetoshi, Kume, Hideaki, Kasai, Haruo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141893/ https://www.ncbi.nlm.nih.gov/pubmed/32215571 http://dx.doi.org/10.1093/jmicro/dfaa007 |
Ejemplares similares
-
UNI-EM: An Environment for Deep Neural Network-Based Automated Segmentation of Neuronal Electron Microscopic Images
por: Urakubo, Hidetoshi, et al.
Publicado: (2019) -
Application of machine learning techniques to electron microscopic/spectroscopic image data analysis
por: Muto, Shunsuke, et al.
Publicado: (2019) -
Signaling models for dopamine-dependent temporal contiguity in striatal synaptic plasticity
por: Urakubo, Hidetoshi, et al.
Publicado: (2020) -
The critical balance between dopamine D2 receptor and RGS for the sensitive detection of a transient decay in dopamine signal
por: Urakubo, Hidetoshi, et al.
Publicado: (2021) -
An efficient and robust hybrid method for segmentation of zebrafish objects from bright-field microscope images
por: Guo, Yuanhao, et al.
Publicado: (2018)