Cargando…

A transition of ω-Fe(3)C → ω′-Fe(3)C → θ′-Fe(3)C in Fe-C martensite

Carbon steel is strong primarily because of carbides with the most well-known one being θ-Fe(3)C type cementite. However, the formation mechanism of cementite remains unclear. In this study, a new metastable carbide formation mechanism was proposed as ω-Fe(3)C → ω′-Fe(3)C → θ′-Fe(3)C based on the tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Ping, D. H., Xiang, H. P., Chen, H., Guo, L. L., Gao, K., Lu, X.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142148/
https://www.ncbi.nlm.nih.gov/pubmed/32269304
http://dx.doi.org/10.1038/s41598-020-63012-9
_version_ 1783519322421854208
author Ping, D. H.
Xiang, H. P.
Chen, H.
Guo, L. L.
Gao, K.
Lu, X.
author_facet Ping, D. H.
Xiang, H. P.
Chen, H.
Guo, L. L.
Gao, K.
Lu, X.
author_sort Ping, D. H.
collection PubMed
description Carbon steel is strong primarily because of carbides with the most well-known one being θ-Fe(3)C type cementite. However, the formation mechanism of cementite remains unclear. In this study, a new metastable carbide formation mechanism was proposed as ω-Fe(3)C → ω′-Fe(3)C → θ′-Fe(3)C based on the transmission electron microscopy (TEM) observation. Results shown that in quenched high-carbon binary alloys, hexagonal ω-Fe(3)C fine particles are distributed in the martensite twinning boundary alone, while two metastable carbides (ω′ and θ′) coexist in the quenched pearlite. These two carbides both possess orthorhombic crystal structure with different lattice parameters (a(θ′) = a(ω′) = a(ω) = [Formula: see text] a(α-Fe) = 4.033 Å, b(θ′) = 2 × b(ω′) = 2 × c(ω) = [Formula: see text] a(α-Fe) = 4.94 Å, and c(θ′) = c(ω′) = [Formula: see text] a(ω) = 6.986 Å for a(α-Fe) = 2.852 Å). The θ′ unit cell can be constructed simply by merging two ω′ unit cells together along its b(ω′) axis. Thus, the θ′ unit cell contains 12 Fe atoms and 4 C atoms, which in turn matches the composition and atomic number of the θ-Fe(3)C cementite unit cell. The proposed theory in combination with experimental results gives a new insight into the carbide formation mechanism in Fe-C martensite.
format Online
Article
Text
id pubmed-7142148
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-71421482020-04-15 A transition of ω-Fe(3)C → ω′-Fe(3)C → θ′-Fe(3)C in Fe-C martensite Ping, D. H. Xiang, H. P. Chen, H. Guo, L. L. Gao, K. Lu, X. Sci Rep Article Carbon steel is strong primarily because of carbides with the most well-known one being θ-Fe(3)C type cementite. However, the formation mechanism of cementite remains unclear. In this study, a new metastable carbide formation mechanism was proposed as ω-Fe(3)C → ω′-Fe(3)C → θ′-Fe(3)C based on the transmission electron microscopy (TEM) observation. Results shown that in quenched high-carbon binary alloys, hexagonal ω-Fe(3)C fine particles are distributed in the martensite twinning boundary alone, while two metastable carbides (ω′ and θ′) coexist in the quenched pearlite. These two carbides both possess orthorhombic crystal structure with different lattice parameters (a(θ′) = a(ω′) = a(ω) = [Formula: see text] a(α-Fe) = 4.033 Å, b(θ′) = 2 × b(ω′) = 2 × c(ω) = [Formula: see text] a(α-Fe) = 4.94 Å, and c(θ′) = c(ω′) = [Formula: see text] a(ω) = 6.986 Å for a(α-Fe) = 2.852 Å). The θ′ unit cell can be constructed simply by merging two ω′ unit cells together along its b(ω′) axis. Thus, the θ′ unit cell contains 12 Fe atoms and 4 C atoms, which in turn matches the composition and atomic number of the θ-Fe(3)C cementite unit cell. The proposed theory in combination with experimental results gives a new insight into the carbide formation mechanism in Fe-C martensite. Nature Publishing Group UK 2020-04-08 /pmc/articles/PMC7142148/ /pubmed/32269304 http://dx.doi.org/10.1038/s41598-020-63012-9 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Ping, D. H.
Xiang, H. P.
Chen, H.
Guo, L. L.
Gao, K.
Lu, X.
A transition of ω-Fe(3)C → ω′-Fe(3)C → θ′-Fe(3)C in Fe-C martensite
title A transition of ω-Fe(3)C → ω′-Fe(3)C → θ′-Fe(3)C in Fe-C martensite
title_full A transition of ω-Fe(3)C → ω′-Fe(3)C → θ′-Fe(3)C in Fe-C martensite
title_fullStr A transition of ω-Fe(3)C → ω′-Fe(3)C → θ′-Fe(3)C in Fe-C martensite
title_full_unstemmed A transition of ω-Fe(3)C → ω′-Fe(3)C → θ′-Fe(3)C in Fe-C martensite
title_short A transition of ω-Fe(3)C → ω′-Fe(3)C → θ′-Fe(3)C in Fe-C martensite
title_sort transition of ω-fe(3)c → ω′-fe(3)c → θ′-fe(3)c in fe-c martensite
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142148/
https://www.ncbi.nlm.nih.gov/pubmed/32269304
http://dx.doi.org/10.1038/s41598-020-63012-9
work_keys_str_mv AT pingdh atransitionofōfe3cōfe3cthfe3cinfecmartensite
AT xianghp atransitionofōfe3cōfe3cthfe3cinfecmartensite
AT chenh atransitionofōfe3cōfe3cthfe3cinfecmartensite
AT guoll atransitionofōfe3cōfe3cthfe3cinfecmartensite
AT gaok atransitionofōfe3cōfe3cthfe3cinfecmartensite
AT lux atransitionofōfe3cōfe3cthfe3cinfecmartensite
AT pingdh transitionofōfe3cōfe3cthfe3cinfecmartensite
AT xianghp transitionofōfe3cōfe3cthfe3cinfecmartensite
AT chenh transitionofōfe3cōfe3cthfe3cinfecmartensite
AT guoll transitionofōfe3cōfe3cthfe3cinfecmartensite
AT gaok transitionofōfe3cōfe3cthfe3cinfecmartensite
AT lux transitionofōfe3cōfe3cthfe3cinfecmartensite