Cargando…
Study of Cinobufagin as a Promising Anticancer Agent in Uveal Melanoma Through Intrinsic Apoptosis Pathway
Uveal melanoma (UM) is the most common primary intraocular carcinoma in adults. Cinobufagin, secreted by the Asiatic toad Bufo gargarizans, is a traditional Chinese medicine, widely used in tumor treatment. Here, we explored the potential antitumor function of cinobufagin and investigated its bioche...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142239/ https://www.ncbi.nlm.nih.gov/pubmed/32300551 http://dx.doi.org/10.3389/fonc.2020.00325 |
_version_ | 1783519337092481024 |
---|---|
author | Zhang, Leilei Huang, Xiaolin Guo, Tao Wang, Huixue Fan, Haiyan Fang, Li |
author_facet | Zhang, Leilei Huang, Xiaolin Guo, Tao Wang, Huixue Fan, Haiyan Fang, Li |
author_sort | Zhang, Leilei |
collection | PubMed |
description | Uveal melanoma (UM) is the most common primary intraocular carcinoma in adults. Cinobufagin, secreted by the Asiatic toad Bufo gargarizans, is a traditional Chinese medicine, widely used in tumor treatment. Here, we explored the potential antitumor function of cinobufagin and investigated its biochemical mechanisms in UM cells. The antitumor potential of cinobufagin was determined via cell viability, cell cycle, and apoptosis assays. Colony formation assays confirmed that cinobufagin exerted potent antitumor activity in a dose-dependent manner. We found that cinobufagin could induce cell apoptosis and upregulate the expression of cleaved caspase-3, cleaved poly(ADP-ribose) polymerase (PARP), and cleaved caspase-9 in vivo and in vitro. In addition, after treatment with increased concentrations of cinobufagin, the intrinsic mitochondrial apoptosis pathway was also activated, which was demonstrated by increased cell apoptosis with increased expression of Bad and Bax, decreased expression of Bcl-2 and Bcl-xl, and reduced mitochondrial membrane potential (MMP) in OCM1 cells. Taken together, the results of this preclinical study suggest that cinobufagin can both inhibit cell survival and induce cell apoptosis in a dose-dependent manner in UM cells, which provides new insights into the biochemical mechanism of cinobufagin and its potential as a future chemotherapeutic agent for UM. |
format | Online Article Text |
id | pubmed-7142239 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-71422392020-04-16 Study of Cinobufagin as a Promising Anticancer Agent in Uveal Melanoma Through Intrinsic Apoptosis Pathway Zhang, Leilei Huang, Xiaolin Guo, Tao Wang, Huixue Fan, Haiyan Fang, Li Front Oncol Oncology Uveal melanoma (UM) is the most common primary intraocular carcinoma in adults. Cinobufagin, secreted by the Asiatic toad Bufo gargarizans, is a traditional Chinese medicine, widely used in tumor treatment. Here, we explored the potential antitumor function of cinobufagin and investigated its biochemical mechanisms in UM cells. The antitumor potential of cinobufagin was determined via cell viability, cell cycle, and apoptosis assays. Colony formation assays confirmed that cinobufagin exerted potent antitumor activity in a dose-dependent manner. We found that cinobufagin could induce cell apoptosis and upregulate the expression of cleaved caspase-3, cleaved poly(ADP-ribose) polymerase (PARP), and cleaved caspase-9 in vivo and in vitro. In addition, after treatment with increased concentrations of cinobufagin, the intrinsic mitochondrial apoptosis pathway was also activated, which was demonstrated by increased cell apoptosis with increased expression of Bad and Bax, decreased expression of Bcl-2 and Bcl-xl, and reduced mitochondrial membrane potential (MMP) in OCM1 cells. Taken together, the results of this preclinical study suggest that cinobufagin can both inhibit cell survival and induce cell apoptosis in a dose-dependent manner in UM cells, which provides new insights into the biochemical mechanism of cinobufagin and its potential as a future chemotherapeutic agent for UM. Frontiers Media S.A. 2020-04-02 /pmc/articles/PMC7142239/ /pubmed/32300551 http://dx.doi.org/10.3389/fonc.2020.00325 Text en Copyright © 2020 Zhang, Huang, Guo, Wang, Fan and Fang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Zhang, Leilei Huang, Xiaolin Guo, Tao Wang, Huixue Fan, Haiyan Fang, Li Study of Cinobufagin as a Promising Anticancer Agent in Uveal Melanoma Through Intrinsic Apoptosis Pathway |
title | Study of Cinobufagin as a Promising Anticancer Agent in Uveal Melanoma Through Intrinsic Apoptosis Pathway |
title_full | Study of Cinobufagin as a Promising Anticancer Agent in Uveal Melanoma Through Intrinsic Apoptosis Pathway |
title_fullStr | Study of Cinobufagin as a Promising Anticancer Agent in Uveal Melanoma Through Intrinsic Apoptosis Pathway |
title_full_unstemmed | Study of Cinobufagin as a Promising Anticancer Agent in Uveal Melanoma Through Intrinsic Apoptosis Pathway |
title_short | Study of Cinobufagin as a Promising Anticancer Agent in Uveal Melanoma Through Intrinsic Apoptosis Pathway |
title_sort | study of cinobufagin as a promising anticancer agent in uveal melanoma through intrinsic apoptosis pathway |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142239/ https://www.ncbi.nlm.nih.gov/pubmed/32300551 http://dx.doi.org/10.3389/fonc.2020.00325 |
work_keys_str_mv | AT zhangleilei studyofcinobufaginasapromisinganticanceragentinuvealmelanomathroughintrinsicapoptosispathway AT huangxiaolin studyofcinobufaginasapromisinganticanceragentinuvealmelanomathroughintrinsicapoptosispathway AT guotao studyofcinobufaginasapromisinganticanceragentinuvealmelanomathroughintrinsicapoptosispathway AT wanghuixue studyofcinobufaginasapromisinganticanceragentinuvealmelanomathroughintrinsicapoptosispathway AT fanhaiyan studyofcinobufaginasapromisinganticanceragentinuvealmelanomathroughintrinsicapoptosispathway AT fangli studyofcinobufaginasapromisinganticanceragentinuvealmelanomathroughintrinsicapoptosispathway |