Cargando…
A Deep Learning Approach for Mild Depression Recognition Based on Functional Connectivity Using Electroencephalography
Early detection remains a significant challenge for the treatment of depression. In our work, we proposed a novel approach to mild depression recognition using electroencephalography (EEG). First, we explored abnormal organization in the functional connectivity network of mild depression using graph...
Autores principales: | Li, Xiaowei, La, Rong, Wang, Ying, Hu, Bin, Zhang, Xuemin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142271/ https://www.ncbi.nlm.nih.gov/pubmed/32300286 http://dx.doi.org/10.3389/fnins.2020.00192 |
Ejemplares similares
-
Objective Recognition of Tinnitus Location Using Electroencephalography Connectivity Features
por: Li, Zhaobo, et al.
Publicado: (2022) -
Review on Emotion Recognition Based on Electroencephalography
por: Liu, Haoran, et al.
Publicado: (2021) -
Exploration of effective electroencephalography features for the recognition of different valence emotions
por: Yang, Kai, et al.
Publicado: (2022) -
Application of Electroencephalography-Based Machine Learning in Emotion Recognition: A Review
por: Cai, Jing, et al.
Publicado: (2021) -
Functional Brain Networks in Mild Cognitive Impairment Based on Resting Electroencephalography Signals
por: Youssef, Nadia, et al.
Publicado: (2021)