Cargando…

Application of a Microfluidic Gas-to-Liquid Interface for Extraction of Target Amphetamines and Precursors from Air Samples

The investigation of clandestine laboratories poses serious hazards for first responders, emergency services, investigators and the surrounding public due to the risk of exposure to volatile organic compounds (VOCs) used in the manufacture of illicit substances. A novel gas sampling interface using...

Descripción completa

Detalles Bibliográficos
Autores principales: Collins, Michael, Gel, Murat, Lennard, Chris, Spikmans, Val, Forbes, Shari, Anderson, Alisha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142577/
https://www.ncbi.nlm.nih.gov/pubmed/32192094
http://dx.doi.org/10.3390/mi11030315
_version_ 1783519414041182208
author Collins, Michael
Gel, Murat
Lennard, Chris
Spikmans, Val
Forbes, Shari
Anderson, Alisha
author_facet Collins, Michael
Gel, Murat
Lennard, Chris
Spikmans, Val
Forbes, Shari
Anderson, Alisha
author_sort Collins, Michael
collection PubMed
description The investigation of clandestine laboratories poses serious hazards for first responders, emergency services, investigators and the surrounding public due to the risk of exposure to volatile organic compounds (VOCs) used in the manufacture of illicit substances. A novel gas sampling interface using open microfluidic channels that enables the extraction of VOCs out of the gas phase and into a liquid, where it can be analysed by conventional detection systems, has recently been developed. This paper investigates the efficiency and effectiveness of such a gas-to-liquid (GTL) extraction system for the extraction of amphetamine-type substances (ATS) and their precursors from the vapour phase. The GTL interface was evaluated across a range of different ATS and their precursors (methamphetamine, dimethylamphetamine, N-formylmethamphetamine, benzaldehyde, phenyl-2-propanone, ephedrine and pseudoephedrine) at concentrations ranging between 10 and 32 mg m(−3). These gas samples were produced by a gas generation system directly in Tedlar(®) bags and gas canisters for controlled volume sampling. When using gas sampled from Tedlar(®) bags, four of the seven compounds were able to be extracted by the GTL interface, with the majority of the VOCs having extraction yields between 0.005% and 4.5%, in line with the results from an initial study. When samples were taken from gas canisters, only benzaldehyde was able to be detected, with extraction efficiencies between 0.2% and 0.4%. A custom-built mount for the GTL interface helped to automate the extraction process, with the aim of increasing extraction efficiency or reducing variability. However, the extraction efficiency did not improve when using this accessory, but the procedure did become more efficient. The results from the study indicated that the GTL interface could be employed for the collection of gaseous ATS and incorporated into mobile detection systems for onsite collection and analysis of volatile compounds related to ATS manufacture.
format Online
Article
Text
id pubmed-7142577
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-71425772020-04-15 Application of a Microfluidic Gas-to-Liquid Interface for Extraction of Target Amphetamines and Precursors from Air Samples Collins, Michael Gel, Murat Lennard, Chris Spikmans, Val Forbes, Shari Anderson, Alisha Micromachines (Basel) Article The investigation of clandestine laboratories poses serious hazards for first responders, emergency services, investigators and the surrounding public due to the risk of exposure to volatile organic compounds (VOCs) used in the manufacture of illicit substances. A novel gas sampling interface using open microfluidic channels that enables the extraction of VOCs out of the gas phase and into a liquid, where it can be analysed by conventional detection systems, has recently been developed. This paper investigates the efficiency and effectiveness of such a gas-to-liquid (GTL) extraction system for the extraction of amphetamine-type substances (ATS) and their precursors from the vapour phase. The GTL interface was evaluated across a range of different ATS and their precursors (methamphetamine, dimethylamphetamine, N-formylmethamphetamine, benzaldehyde, phenyl-2-propanone, ephedrine and pseudoephedrine) at concentrations ranging between 10 and 32 mg m(−3). These gas samples were produced by a gas generation system directly in Tedlar(®) bags and gas canisters for controlled volume sampling. When using gas sampled from Tedlar(®) bags, four of the seven compounds were able to be extracted by the GTL interface, with the majority of the VOCs having extraction yields between 0.005% and 4.5%, in line with the results from an initial study. When samples were taken from gas canisters, only benzaldehyde was able to be detected, with extraction efficiencies between 0.2% and 0.4%. A custom-built mount for the GTL interface helped to automate the extraction process, with the aim of increasing extraction efficiency or reducing variability. However, the extraction efficiency did not improve when using this accessory, but the procedure did become more efficient. The results from the study indicated that the GTL interface could be employed for the collection of gaseous ATS and incorporated into mobile detection systems for onsite collection and analysis of volatile compounds related to ATS manufacture. MDPI 2020-03-17 /pmc/articles/PMC7142577/ /pubmed/32192094 http://dx.doi.org/10.3390/mi11030315 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Collins, Michael
Gel, Murat
Lennard, Chris
Spikmans, Val
Forbes, Shari
Anderson, Alisha
Application of a Microfluidic Gas-to-Liquid Interface for Extraction of Target Amphetamines and Precursors from Air Samples
title Application of a Microfluidic Gas-to-Liquid Interface for Extraction of Target Amphetamines and Precursors from Air Samples
title_full Application of a Microfluidic Gas-to-Liquid Interface for Extraction of Target Amphetamines and Precursors from Air Samples
title_fullStr Application of a Microfluidic Gas-to-Liquid Interface for Extraction of Target Amphetamines and Precursors from Air Samples
title_full_unstemmed Application of a Microfluidic Gas-to-Liquid Interface for Extraction of Target Amphetamines and Precursors from Air Samples
title_short Application of a Microfluidic Gas-to-Liquid Interface for Extraction of Target Amphetamines and Precursors from Air Samples
title_sort application of a microfluidic gas-to-liquid interface for extraction of target amphetamines and precursors from air samples
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142577/
https://www.ncbi.nlm.nih.gov/pubmed/32192094
http://dx.doi.org/10.3390/mi11030315
work_keys_str_mv AT collinsmichael applicationofamicrofluidicgastoliquidinterfaceforextractionoftargetamphetaminesandprecursorsfromairsamples
AT gelmurat applicationofamicrofluidicgastoliquidinterfaceforextractionoftargetamphetaminesandprecursorsfromairsamples
AT lennardchris applicationofamicrofluidicgastoliquidinterfaceforextractionoftargetamphetaminesandprecursorsfromairsamples
AT spikmansval applicationofamicrofluidicgastoliquidinterfaceforextractionoftargetamphetaminesandprecursorsfromairsamples
AT forbesshari applicationofamicrofluidicgastoliquidinterfaceforextractionoftargetamphetaminesandprecursorsfromairsamples
AT andersonalisha applicationofamicrofluidicgastoliquidinterfaceforextractionoftargetamphetaminesandprecursorsfromairsamples