Cargando…

Molecular Probes to Evaluate the Synthesis and Production Potential of an Odorous Compound (2-methylisoborneol) in Cyanobacteria

The volatile metabolite, 2-Methylisoborneol (2-MIB) produced by cyanobacterial species, causes odor and taste problems in freshwater systems. However, simple identification of cyanobacteria that produce such off-flavors may be insufficient to establish the causal agent of off-flavor-related problems...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Keonhee, Yoon, Youngdae, Cho, Hyukjin, Hwang, Soon-Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142697/
https://www.ncbi.nlm.nih.gov/pubmed/32188031
http://dx.doi.org/10.3390/ijerph17061933
Descripción
Sumario:The volatile metabolite, 2-Methylisoborneol (2-MIB) produced by cyanobacterial species, causes odor and taste problems in freshwater systems. However, simple identification of cyanobacteria that produce such off-flavors may be insufficient to establish the causal agent of off-flavor-related problems as the production-related genes are often strain-specific. Here, we designed a set of primers for detecting and quantifying 2-MIB-synthesizing cyanobacteria based on mibC gene sequences (encoding 2-MIB synthesis-catalyzing monoterpene cyclase) from various Oscillatoriales and Synechococcales cyanobacterial strains deposited in GenBank. Cyanobacterial cells and environmental DNA and RNA were collected from both the water column and sediment of a eutrophic stream (the Gong-ji Stream, Chuncheon, South Korea), which has a high 2-MIB concentration. Primer sets mibC196 and mibC300 showed universality to mibC in the Synechococcales and Oscillatoriales strains; the mibC132 primer showed high specificity for Pseudanabaena and Planktothricoides mibC. Our mibC primers showed excellent amplification efficiency (100–102%) and high correlation among related variables (2-MIB concentration with water RNA r = 689, p < 0.01; sediment DNA r = 0.794, p < 0.01; and water DNA r = 0.644, p < 0.05; cyanobacteria cell density with water RNA and DNA r = 0.995, p < 0.01). These primers offer an efficient tool for identifying cyanobacterial strains possessing mibC genes (and thus 2-MIB-producing potential) and for evaluating mibC gene expression as an early warning of massive cyanobacterial occurrence.